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Introduction

The aim of the WP5 is to improve performance of each single modality processing
(still images and video, speech and audio, text) in the perspective of multimedia
understanding. The choice of Muscle was to keep all these modalities in the same
WP even this involves different technical communities. This choice is motivated
by the fact that we are convinced that these communities will benefit from putting
together their technical expertise and have the opportunity to know how much
progress is achieved in the other different modalities in the field of information
retrieval by content. The natural language processing community is one of the
earliest to deal with information retrieval. Visual content retrieval community
learns a lot form NLP community in this field. More recently, audio and speech
community have investigated this topic.

This document is the first deliverable for WP5 activities that consists on the
state of the art for each single modality. It is structured in three major parts as
follows:

• Part I: State of the art for Image and Video Processing

• Part II: State of the art in selected area of Speech and Audio Processing

• Part III: State of the art in Natural Language Processing

i



ii INTRODUCTION



Part I

State of the art for Image and
video processing

1





Chapter 1

Introduction

This report provides an overview about recent methods and algorithms for pro-
cessing video and image data. The report concentrates on techniques and meth-
ods that have been used in the broad context of multimedia understanding. It
addresses the whole spectrum of required methologies from visual features (static
and dynamic), organization of visual features, segmentation, saliency and atten-
tion, and object detection and recognition.
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Chapter 2

Visual Features for CBR

Content-based retrieval (CBR) from image and multimedia databases is one key
application for multi-modal interfaces and search in multimedia databases. This
chapter addresses the issue of feature extraction for modeling the visual appear-
ance of images and their use for indexing the database. A variety of feature
extraction algorithms exists, including the most classical ones: color, shape and
texture. This state of the art will go beyond this simple ”low-level” features and
extract also more semantic information from the images using structural prop-
erties of images and patterns in terms of high-level features. In particular, we
present in section 2.1 un local description of the image, which is based on points
of interest and that is relevant for queries on parts of images or objects. In section
2.2, 3D shape descriptors are investigated. Finally, the chapter ends in section
2.3 with an overview on visual saliency approaches, that play a crucial role in
analyzing the fast amount of visual information.

2.1 Local descriptors for content-based image

retrieval

When considering sub-image retrieval or object recognition, local image char-
acterization approaches provide better results than global characterization ap-
proaches classically based on color, texture And shape. It allows to gain robust-
ness against occlusions and cluttering since only a local description of the patch of
interest is involved. Such approaches are said to be salient features-based, because
the information extracted from the image is condensed into limited but salient
sites. Many kind of salient features can be envisaged : they can be represented by
salient regions resulting from an image segmentation step [CBGM02, JJG01], or
by non-connected image zones resulting from the construction of saliency maps
as proposed by Itti et al. in [LCE98]. They can also be represented by edges
[GS00, ST02], junctions, or special points [BS96]. This last case is the most en-
countered one and conducts to the extraction of points of interest (often called

5



6 CHAPTER 2. VISUAL FEATURES FOR CBR

key points or salient points).Using points of interest is mainly motivated by ob-
serving that they provide the most compact representation of the image content
by limiting the correlation and redundancy between the detected features. In-
deed, contrary to an edge that exhibits a grey-level regularity along the contour
curve, or a region in which all pixels fulfill some homogeneity criterion, there does
not exist evident correlation nor dependency between non-connected and isolated
salient points. Moreover, due to their sparse spatial distribution, object or image
recognition based on salient points is much more robust to occlusions.

It is also important to note that the use of points of interest are often inspired
from many psychovisual works [Mar82, Gor97] that have shown that the sensitiv-
ity of the hvs (Human Visual System) is not uniformly distributed across the im-
age content. This observation leads to saliency-based image indexing approaches
[AMS+00] in which the first step consists in condensating the global information
contained in the image into a limited number of feature values. Consequently,
these salient features are to be selected with precision and in accordance with
the properties of the hvs since the computation of the signature will uniquely
depend on them. Ideally, salient features should be robust to geometric trans-
forms, slight changes of viewpoint and variations of imaging conditions. The
robustness regarding to coding schemes is also of prime importance for indexing
purpose as underlined in [JB99]. Finally, most of the global image content should
be contained in the extracted salient features or in a close neighborhood.

Image retrieval based on local descriptors follows a classical computation flow :
first a robust salient feature detector must be designed. Such a detector deter-
mines the location of salient points in the image, plus the support regions around
them where the local descriptor is to be computed. Second, a rich and compact
descriptor is computed for each salient point, by analyzing the image information
within the support region exhibited. Finally, a similarity measure must be found
to compare two salient point signatures.

This survey is organized as follows : in section 2.1.1, we remind and briefly
describe the point detectors we have encountered in the literature of Computer
Vision. We revisit the classical Harris and Stephens point detector before pre-
senting derived approaches that involve different support regions according to
the involved image transformations. Other different techniques are also listed. In
section 2.1.2, we revisit the local descriptors usually associated to such points of
interest and support regions.

2.1.1 Point of interest detection

In the context of content-based images retrieval, the extracted points must have
the following characteristics : they represent single points located in image area
where the information is considered as perceptually relevant. Ideally, the point
detector should have a good repeatability, i.e. should be able to repeat the ex-
tracted points from an image to another whatever the photometric/geometric
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transforms involved (translation, rotation, changes of scale, of viewpoint, of illu-
mination, etc).

Since the early work of Moravec [Mor77] for stereo matching, many point
extractors have been proposed in the literature of Computer Vision. Few com-
parison studies has been done for these approaches. See for example the ones of
2000 for grey value images [SMB00] and color images [GMDP00].

The most popular one is probably the Harris and Stephens detector [HS88],
which has been used first for stereo purposes and then for image retrieval. It is
based on the computation of the local auto-correlation function M of the signal
at each pixel location. Large eigenvalues of this function indicate large curva-
tures in the two directions, which denotes the presence of a salient point. The
eigenvalues computation is replaced by computing local maxima of the function
Det(M) − k.T race(M)2. A modified version of this detector has been proposed
in [SM97] by improving the computation of the spatial derivatives with pre-
cise gaussian derivatives. This precise version allows to gain in repeatability, as
demonstrated in [SMB00]. The precise version of the Harris detector has been
also extended to deal with color images in [MGD98], where it gets a better re-
peatability [GMDP00]; see for example the figure 2.1.

Figure 2.1: Automatic Harris Color Points extraction (500 points).

To obtain robustness to changes of viewing conditions, point of interest de-
tectors should be invariant to image transformations. We revisit the more recent
works that have been done for some usual image transformations. The encoun-
tered approaches provide specific point of interest detectors associated to specific
support regions.
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Scale invariance

The Harris detector (and its precise or color version) is invariant to rotation but
is very sensitive to changes in image scale. Recent works proposed derived or new
detectors to achieve scale invariance. The problem of identifying an appropriate
scale for feature detection has been studied by Lindeberg who has described it
as a problem of selection of a characteristic scale [Lin93, Lin94]. From these
considerations, several works on scale invariance have been proposed for local
features. They are described in the next paragraphs.

In [Lin98], Lindeberg has found a stable keypoint location in scale space by
searching for 3D maxima of a function based on the Laplacian normalized with
the scale. On the other hand, Lowe considered the local extrema in scale-space
of Differences of Gaussian images [Low99]. Such points of interest are often
called DoG points. As demonstrated by Lowe and evaluated later in [MS01], the
DoG approach represents a close approximation of the Laplacian one, which is
successfully compared to other functions (the Gradient and the standard Harris
functions).

The paper [MS01] also presents an extension of the Harris precise detector.
Here, the Harris-Laplace detector is introduced. It consists in extracting Harris
points at a characteristic scale : each point is localized in 2D with the Harris
function and then in scale-space where the Laplacian attains a maximum over
scales. The authors demonstrate that this detector provides the best repeatability
according to other scale-space detectors like the Laplacian one, the DoG one, the
Gradient one and the standard Harris.

All these approaches provide points of interest that are invariant to rotation
and scale changes. The selected scale determines the size of the support region
to consider around the point (usually a uniform gaussian kernel) during the local
description step.

Affine transformations

Some recent approaches have been proposed to adapt the support region to
affine transformations (skew and stretch). In [Bau00], Baumberg extracts in-
terest points at several scales and then adapts the shape of the support region to
the local image structure using an iterative procedure based on the second order
moment matrix. The uniform gaussian kernel which usually defines the support
region is replaced by an ellipsoidal one.

In [MS02], the scale and the location of the points are directly extracted in an
affine invariant way. The Harris-Laplace detector is extended to cope with such a
transformation. The key idea is that the eigenvalues of the second order moment
matrix computed in a point can be used to normalize the region according to
affine transforms. The properties of the second order matrix were also explored
in [SZ01], but their goal was to obtain an affine invariant texture descriptor.
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Other techniques : spatial-frequency approaches

Different approaches have been proposed to extract points on sharp region bound-
aries instead of on corners. They are usually based on wavelet salient features
detection. In [LSBJ00a], the authors propose a multi-resolution approach where
salient points are associated to highest wavelet coefficient values. Paper [LLV03a]
presents a similar approach that is independent of the wavelet filter size and that
does not favor any contour direction. This approach also proposes a method for
automatically determining the optimal number of salient points to extract.

2.1.2 Local image description

The second step consists in designing salient signatures that describe the sup-
port regions associated to the extracted points. Here the main task is to bridge
the gap between image semantics and pixels. As underlined in [LNMT04], a
saliency-based image representation paradigm can be defined by observing that
two different approaches can be used to describe an image from a limited number
of points of interest : a global salient approach and a local salient approach. In the
former case, the technique consists in extracting a unique signature by consider-
ing globally the information contained in the support regions. This method can
be considered as a tradeoff between classical global approaches working on the
entire image and purely saliency-based approaches. Indexing proposals belonging
to this class of methods include [STLH00, NM01, WJKB00]. In the latter case,
the approach consists in considering independently the information contained in
each support region, resulting in the computation of a local signature per salient
point. In this document, we are mainly focusing on this second kind of technique.

The description is a function of the photometric and geometric information
around the point and be the most compact possible. Many techniques have been
developed, they depend on the considered application and more precisely on the
image transformations involved. Roughly speaking, two kind of local signatures
can be envisaged : the signatures coming from the global image indexing ap-
proaches (color histograms, Gabor jets, etc.) and the purely salient signatures
that are dedicated to the use of a salient point detector.

The simplest local description that can be associated to a point of interest
has been proposed for stereo matching purposes [ZDFL95] : it is the vector of the
pixels located in a window around the point. A cross-correlation measure serves
as similarity measure between two points. But the high dimensionality of such
a descriptor makes it unapplicable for content-based images retrieval purposes.
More compact point descriptors must be designed.
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The differential invariants family

A set of image derivatives computed up to a given order approximates a point
of interest neighborhood. Such a set is usually referred to local jet and the local
description obtained is invariant to image translation. A stable estimation of the
derivatives can be obtained by convolution with Gaussian derivatives. From the
work of Koenderink [KVD87] and Florack [FtHRKV91, FtHRKV94] on the prop-
erties of local derivatives, a lot of work has been done on differential descriptors.
Basically, the components of the local jet can be combined to obtain invariance to
image rotation, providing differential quantities which are invariant under SO(2)
group of similitudes. Such an approach has been used in [SM97, GB01] for image
retrieval purposes and in [MGD98] for stereo matching purposes. When consider-
ing grey value images, they need to be computed up to order 3 [SM97], providing
a set of 9 invariants. A generalization to color images has been proposed in
[MGD98]. The use of the color information allows to reduce the description to
the first order invariants, providing 8 color invariants less sensitive to noise than
high order derivatives [GB02].

Another technique, referred as steerable filters [FA91], consists in computing
the derivatives of the local jet in a particular direction. For instance, steering
derivatives in the direction of the gradient makes them invariant to rotation.

Some similar approaches of local description are based on complex filters. In
[Bau00] and[SZ02] such filters are derived from the family K(x, y, θ) = f(x, y)eiθ,
where θ is the orientation. [Bau00] uses Gaussian derivatives for f(x, y) whereas
in [SZ02] a polynomial is applied. These filters differ from the Gaussian deriva-
tives by a linear coordinates change in filter response space. When dealing with
rotation invariance, it is necessary to consider the modulus of each response filter
(the phase is sensitive to rotation).

All these descriptors are invariant to 2D translation and rotation. To adapt
them to scale changes, a solution consists first in computing the derivatives by
using a Gaussian kernel parameterized by the characteristic scale founded dur-
ing the salient point detection (see section 2.1.1) and second in normalizing such
derivatives by this scale. See for example [MS01] where steerable filters are used
as local descriptors. Another solution consists in directly normalizing the sup-
port regions associated to the points computed in scale-space : all supports are
mapped to a circular region of constant radius. As a result, descriptors com-
puted on such supports become invariant to scale changes. The same technique
can be applied for affine transformations by mapping to a circular window the
ellipsoidal support associated to point of interest extracted under affine transfor-
mations. The invariants obtained from this normalized support are invariant to
affine transformations. Such an approach is employed in [MS02, MS03].

When considering illumination changes, two approaches are possible to nor-
malize the invariants to affine illumination changes [Gro00, GM02]: first, it is
possible to normalize the support region. Second, the derivatives can be nor-
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malized by dividing them with the appropriate power of the gradient magnitude.
Such a normalization eliminates the linear factor. The differentiation operation
naturally eliminates the offset one.

The SIFT descriptors

Based on the DoG detector [Low99], Lowe has proposed the Scale Invariant Fea-
ture Transform approach (SIFT) for describing the local neighborhood of such
points. Here, the local neighborhood of the salient point is described with mul-
tiple images that are orientation planes representing a number of gradient orien-
tations. This descriptor can be divided by the square root of the sum of squared
components to obtain illumination invariance. This approach provides robustness
against localization errors and small geometric distortions. Its main drawback is
the high dimension of the feature space involved (128 gradient orientations). A
complete use of The SIFT approach has been presented in [Low04] for reliable
point matching between different views of an object or scene.

A recent performance evaluation of local descriptors [MS03] has shown that
the SIFT descriptor performs best. Steerable filters come second. As noticed by
the authors of this evaluation, this signature can represent a good choice given
the low dimensionality.

Other techniques : spatial-frequency approaches

All other approaches are generally picked in the global image indexing litera-
ture. Many techniques which describe the frequency content of the images have
been developed. The well known Fourier transform decomposes the image con-
tent into basis functions. But this representation makes not explicit the spatial
relations between points and the basis functions are infinite, therefore difficult
to adapt to a local approach. Frequency approaches based on the Gabor trans-
form [Gab46] allow to take spatial relations between points into account, see
for example [WJKB00]. Approaches based on wavelets have been also explored
[Vet95, STLH00]. These classes of techniques are usually employed in the context
of texture classification. Finally, the classical use of the color information have
also been proposed [LLV03a, STLH00]. However, all the obtained signatures need
to be high dimensional to give a precise signature.

Similarity measures

Except for the SIFT descriptor where the distance measure is L2 [Low99], the
similarity between descriptors is usually computed with the Mahalanobis dis-
tance. The involved covariance matrix takes the different magnitudes, possible
correlations and variability of the feature components into account. Point de-
scriptors are subject to different kinds of noises : in practice, they are sensitive
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to image acquisition (sensors and sampling errors), to numerical errors, to points
of interest delocalization, etc.

These considerations show the importance of the similarity measure which
must be carefully chosen for the considered descriptor to achieve best perfor-
mances. An optimal similarity measure is directly related to the shape of their
variability. When considering the Mahalanobis distance, this noise can be inte-
grated in the similarity measure via the covariance matrix Λ. When a model of
noise of the components cannot be specified, the way to estimate the covariance
of the components comes down to different empiric solutions :

• Estimating Λ from the whole available data. This simple solution generates
weights that are not discriminant, since representing a rough model of noise.
Even so, this is the most common solution encountered to compare features
with the Mahalanobis distance;

• Estimating Λ from points of interest whose local neighborhood is submitted
to synthetic photometric and geometric transformations and perturbations
that usually apply to images;

• Estimating Λ from training sequences of real images. Several points on
different images with representative perturbations are tracked and a com-
bination of the covariance matrices obtained can be used as the model of
noise of point characterization. This solution has been adopted for exam-
ple in [SM97] for image retrieval and in [GL04] for object tracking in video
sequences.

Adding geometrical constraints between points of interest

Semi-local geometric constraints that consider the spatial relations between neigh-
bor salient points of the same image can be added to enrich the local point
description [SM97, GB01, BFGS04]. Obviously, they depend on the image trans-
formations involved by the application. We present in figure 2.2 an example of
object retrieval with local descriptors, with the CBIR system IKONA1 developed
by INRIA.

1http://www-rocq.inria.fr/imedia/ikona.html
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(a) The image indexed with points of interest (in white), with the query
area defined by the user (the green rectangle).

(b) 16 first results of this sub-image retrieval, presented by decreasing
order of similarity.

Figure 2.2: An example of object retrieval with local descriptors. The query is a
particular object (here a sunflower).
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2.2 3D shape matching methods for content-

based retrieval

A survey [ZP04] has been done recently on this subject and two papers have
reported the result of comparative studies of the efficiency of several shape de-
scriptors [PSF04, TV04].

2.2.1 Specificity of 3D shapes

Shape representation

In most of the 3D shape retrieval methods, the 3D shapes are represented by
their boundary as a 2 dimensional surface such as a polyhedral surface, but they
can also be voxelized.

Existing shape benchmarks (Princeton University 2, Konstanz University 3

and Utrecht University 4) propose databases of polyhedral models but not give
a guaranty on the way the surface is described (well defined or a soup of faces).
Then some shape matching approaches will need a pre-processing phase to obtain
a manifold surface.

Pose normalization

The 3D models may have arbitrary scale and position. As most of the dissimilarity
measures are sensitive to translations and rotations, it is necessary to put the
models in a canonical coordinate system. Most of the approaches use a PCA
transform (the method of [DVR01] is used in several approaches).
The PCA transforms do not give the axes orientation (as noticed in [ROT02,
ZP02, MSO00]) and may lead to ambiguities in the choice of the coordinate axes
when the eigenvalues are similar. The dissimilarity measures of [ZP02, MSO00]
take into account the coordinate systems obtained by switching the principal
axes, which leads to a real invariance in rotation.

2.2.2 3D Shape matching methods

The approaches will be grouped into four categories :

• the methods based on a spatial decomposition of the 3D object,

• the methods working on the surface of the objects,

• the graph based methods,

2Princeton 3D models search engine : http://shape.cs.princeton.edu/search.html.
3Konstanz 3D models similarity search engine :http://merkur01.inf.uni-konstanz.de/cccc/.
4Utrecht 3D shape retrieval engine :http://www.cs.uu.nl/centers/give/imaging/3drecog/3dmatching.html.
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• the 2D visual similarity based methods.

Spatial decomposition

Most of the methods grouped in this section put the 3D shape in a spatial grid
formed either by : voxels, concentric spheres, tetrahedra, etc... and use this
spatial decomposition to compute the shape descriptor :
- Voxels :

in [EPT00], a shape descriptor based on wavelets is proposed.

in [TV03], the descriptor is a set of weighted points, each weighted point being
a “salient” point belonging to a voxel intersecting the surface. The dissimilarity
measure uses the proportional transportation distance [GV02] derived from the
Earth Mover’s distance.

in [KCD+03], a reflective symmetry descriptor is built measuring the reflective
symmetry of the object w.r.t. every plane passing by the centroid.
- Subdivision of a sphere [MAS99] : the 3D object is put into a decomposition
of a sphere in angular sectors and concentric spheres. A histogram based on this
decomposition is built and a quadratic form distance measure is used to compare
two objects.
- Concentric spheres : two approaches are based on spherical harmonics
[VS02],[KF02]. Another is based on Zernike descriptors [NK03b, NK03a] and
seems to obtain better results.
- Tetrahedra [ZC01] : the descriptor is computed using Fourier transforms on
an approximation of the 3D object into a set of tetrahedra.
- 2D slices [NK01] : the similarity is evaluated by computing 2D distance fields
between the successive slices of the voxelized shapes and transforming them into
a 3D distance between the two objects. This computation must be made for each
couple of 3D objects and then it can be long.
- principal axes of inertia [ROT02] : the 3D models are parameterized along
the principal axes of inertia and three histograms (moment of inertia about the
axis, average distance of the surface about the axis and variance of the distance
from the surface to the axis) are computed.

Working on the surface of the objects

These two approaches work only on well defined surfaces :
- Shape index histogram (SF3D) [ZP02] : a histogram of the shape index
(function of the two principal curvatures on continuous surfaces) is adapted for
polyhedral surfaces.
- Curvature map [JAP03] : the shape is represented by its curvature map,
transforming the 3D problem into an image indexing problem. This method only
works on genus 0 surfaces.



16 CHAPTER 2. VISUAL FEATURES FOR CBR

The other approaches work on the facets and do not need to have a manifold
surface.
- Complex EGI [KI93] : a histogram is built on the Gaussian sphere. In this
representation, the weight associated with each outward surface normal depends
on the facet’s area and on the distance from the origin. This method is sensitive
to change in facets orientations.
- Moment-based [EPT00, MEA01] : these two approaches calculate the 3D sta-
tistical moments and compare them. The second approach adapts the similarity
computation with SVM to obtain an interactive method.
- Cord-based [EPT00] : three histograms describing the distribution of angles
between the cords and the first (respectively the second) principal axis and the
distribution of the length of the cords are built. The Hamming distance is used
when comparing the histograms.
- Shape distribution [ROD02, CYIR02] : these approaches compute a shape
descriptor by combining probability distributions on shape functions represent-
ing the geometric properties of the 3D shape (angle between three points of the
surface, distance between the centroid and a point, distance between two points
of the surface, etc...). These methods achieve scale and affine invariance.
- Hough transform [ZP02] : a shape descriptor based on a 3D Hough trans-
form is computed. The ambiguities of the PCA algorithm are taken into ac-
count in their method to obtain a rotation invariant shape descriptor. The 3D
Hough transform descriptor was evaluated on the Princeton database (907 mod-
els). Some retrieval results (Human biped & Fighter jet airplane) are presented
in figure 2.3

Graph based approaches

The main point of the graph based approaches is to extract the topological in-
formation which may be lost in the other approaches. These methods are affine
invariant but most of them only work on well defined polyhedral models. The
similarity measure between shapes consists in a recursive graph comparison.
The method of [HSD03] works on a voxelization of the shape and use a thinning
algorithm to compute the skeletal nodes.
The skeletal graphs of [MHK01, DBS03, TS04] use Reeb graphs based on the
computation of a geodesic distance on the surface.

2D visual similarity-based methods

When the polyhedral shape is ill-defined, the similarity can be computed com-
paring their appearance :
- in [CK01], each object is associated to 72 viewpoints computed by rotating the
camera along an axis. The views are then structured in a shock graph. The
comparison of the view of an object with the views of the database models uses
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a shock graph matching.
- in [ROT03], after a normalization process, they compute depth images from 42
viewpoints and compare the shape feature vectors using Zhang’s Fourier descrip-
tors [ZL02].
- in [DCO03], one hundred orthogonal projections are encoded by Zernike mo-
ments and Fourier descriptors for retrieval.

2.3 Saliency & Visual Feature Organization

Knowing what is important in an image or video is the first vital step in de-
termining the associations between multimedia objects and hence capturing the
relationships and ultimately the semantic content of those objects. Recent re-
search on modeling human visual attention is showing distinct promise in this
area. Unimportant background regions in an image may be compressed without
significantly affecting the overall perceptual quality of the image. Therefore vi-
sual saliency operators play a crucial role in analyzing the fast amount of visual
information.

2.3.1 A state of the art

Visual systems that have evolved in nature appear to exercise a mechanism that
places emphasis upon areas in a scene without necessarily recognising objects
that lie in those areas. Organisms having the benefit of vision are thereby able to
sense danger and direct attention rapidly towards the unusual without having to
tolerate the initial delay of a recall from memory. Treisman and Gelade [TG80] in
their feature-integration theory make the distinction between scenes that require
relatively slow focused attention to analyse and those which can be processed
more rapidly during a pre-attentive stage. Evidence shows that it is relatively
easy to spot a target ”O” that pops out amongst a background of ”N”s and
”T”s, but time consuming to locate one’s offspring in a school photograph. They
posed, as others have done since, the question why features that distinguish a
target from the background in pre-attentive vision when applied separately often
do not when they appear in conjunction. Wolfe [Wol98] emphasises that there
is no clear distinction between slow serial and fast parallel mechanisms in visual
search and that the evidence shows a continuum of search results in which both
mechanisms perhaps play a part.

Desimone and Duncan [DD95] in their review confirm that strengthening the
perceived grouping between targets and background objects makes the back-
ground harder to ignore. Furthermore they suggest that there is little evidence
that there are separate representations for different features such as orientation
and colour in the cortex stating that cells that respond to a single type of stimu-
lus have yet to be found. They conclude that pre-attentive vision is an emergent
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(a) Retrieval result from Princeton database (Hu-
man biped class)

(b) Retrieval result from Princeton database
(Fighter jet airplane)

Figure 2.3: An evaluation of the 3D Hough transform on the Princeton database
(907 models). The screenshots belong to the IKONA platform developed at
INRIA. They show the performance and robustness of the approach in the 3D-
model retrieval process. Here, the system returns a list of outputs ranking on the
degree of similarity to the object query (First position). In these tables, we just
show the top sixteen matches.
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property of competitive interactions acting in parallel across the visual field and
not the binding together of a set of separate feature measures.

Nothdurft [Not00] has shown that the salience of targets in human vision
is nearly always increased if multiple contrasts in orientation, luminance and
motion are present. The addition was mostly nonlinear, which indicated that
the underlying mechanisms were not independent and not separable as Desimone
and Duncan suggest.

Experiments by Reinagel and Zador [RZ99] using eye trackers show that sub-
jects are attracted by image regions possessing high contrast and also by neigh-
bourhoods in which pixel correlations drop off rapidly with distance. They ob-
serve that this strategy increases the entropy of the effective visual input and is
in accord with measures of informativeness and cognitive surprise.

Early computational models by Koch et al [KU85] of attention generate maps
that encode the visual environment for different elementary features such as ori-
entation of edges and colour contrast and combine these into an overall saliency
map. The most conspicuous neighbourhoods are taken to be those that give rise
to the most activity in the saliency map as a result of activity in corresponding
feature maps. Many authors have put emphasis upon identifying specific features
that are normally associated with saliency and combining these to produce such
maps. Milanese et al [MGP95] used five feature maps in their analysis of static
scenes. After applying filters and passing the maps through a nonlinear relax-
ation process, they are averaged and thresholded to produce the saliency map.
Itti et al [LCE98] have defined a system which models visual search in primates.
42 features based upon linear filters and centre surround structures encoding in-
tensity, orientation and colour, are used to construct a saliency map that reflects
areas of high attention. Supervised learning is suggested as a strategy to bias
the relative weights of the features in order to tune the system towards specific
target detection tasks. They observed that salient objects appearing strongly in
only a few dimensions may be masked by noise present in a larger number of
dimensions. Han et al [25, 29] use the Itti model to determine the best positions
to seed a region growing algorithm for object extraction.

Osberger and Maeder [OM98] identified perceptually important regions by
first segmenting images into homogeneous regions and then scoring each area
using a number of intuitively selected measures. The approach was limited by the
success of the segmentation techniques used. Luo and Singhal [LS00] also devised
a set of intuitive saliency features and weights and used them to segment images
to depict regions of interest. The integration of the features was not attempted.
Marichal et al [MVDM96] used fuzzy logic to segment object boundaries before
assigning levels of interest based upon a number of criteria. Zhao et al [ZSO+96]
employed features reflecting size, distance from the centre of the image, boundary
length, compactness and colour to determine region importance.

Reisfeld et al [RWY95] detect symmetries in grey level images as a means of
identifying certain image locations that are worthy of attention. The work relies



20 CHAPTER 2. VISUAL FEATURES FOR CBR

heavily upon edge extraction and was extended to colour images by Heidemann
[Hei04].

Walker et al [WCT98] suggested that object features that best expose saliency
are those which have a low probability of being mis-classified with any other
feature. Mudge et al [MTV87] also considered the saliency of a configuration of
object components to be inversely related to the frequency that those components
occur elsewhere. Oliva et al [OATH03] again use the idea that frequent features
in images are more likely to belong to the background. They use orientation,
scale and texture features to calculate saliency likelihoods and also incorporated
contextual information.

Several models of visual attention [LCE98, GPW03, MTF+04] have their
counterparts in surround suppression in primate V1 [16]. Grigorescu et al.
[GPW03] use this model and confirm qualitative explanations of visual pop-out
effects. They obtain their results using pre-selected orientation sensitive Gabor
energy filters, and apply their ideas to contour detection. Whereas Grigorescu
et al obtain their results using pre-selected orientation sensitive Gabor energy
filters, Stentiford [Ste03, Ste01] takes an approach that is not so restricted and
generates features appropriate to the image in question. In this way features that
determine levels of attention, which may or may not be orientation dependent,
are not excluded from consideration.

By observing that visual receptive fields are sensitive to orientations, scales
and intensity variations, some wavelet-based salient point detectors have also
been proposed [LSBJ00b, LLV03b] leading to a description of the image content
by a limited number of single points that are considered as perceptually relevant.

2.3.2 Applications

There is no doubt that the selection of salient image regions is a key problem in
many fields of image processing. These cover object recognition [HS93], content-
based image retrieval [Ste03, PG98, TSL+01], image compression [Ste01, PS00,
HXCM04], natural image classification [RL04], and medical image registration
[MV98]. Specific examples include :

• Fan et al [FXM+03] use attentional heuristics to identify sub-pictures likely
to be of interest and more easily displayed while browsing on the small
screen of a PDA.

• Models of visual attention have been used to extend the JPEG 2000 com-
pression standard with some success [NCSP03].

• A blurring strategy based on visually salient regions of video frames is
used to compress video signals without substantially interfering with human
fixations [Itt04].
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• Measures of attention have been shown to enhance the performance of ob-
ject recognisers by focusing analysis on the regions likely to contain relevant
objects [HXCM04].

2.3.3 Discussion

Almost all researchers in the field agree that saliency plays a major part in the
recognition processes that take place in the human visual system, but the exact
relationship is unclear. There is also agreement that local salient features cer-
tainly include those that occur relatively rarely in a scene. Indeed it is hard to see
how a feature that was present throughout an image could be visually attentive.

Many attention models make use of plausible features such as orientation,
intensity, colour and texture as a first step in the identification of regions of in-
terest. Concepts of centre surround suppression are often applied that emphasise
the importance of local differences and lead to an attention map that displays
the relative saliency of various regions in the image.

However, there is no evidence that visual systems make use of a small num-
ber of predefined features that we might intuitively believe to be important in
attention mechanisms. The favoured few certainly characterise saliency in many
images, but there is an infinitude of other possible feature combinations to choose
from and there will always therefore be images whose saliency is not captured.
Salient features are most likely to be different in different images and the diverse
possibilities emerge only at the time the images are viewed. This means that
implementations of attention mechanisms that use any form of pre-defined fea-
ture measurements may preclude solutions in the search space and be unable to
handle unseen material.

The same problem arises again in recognition where we are seeking features in
common between two or more patterns. There is no guarantee that a pre-selected
feature set and associated representations will encompass the inter-pattern simi-
larities necessary to obtain a satisfactory performance, although sensible feature
design based on prior knowledge will always yield good results. Indeed it is a crit-
icism that techniques in feature extraction and pattern classification are treated
separately with the result that features are not constructed according to classifi-
cation performance [DHS01].

One of the most difficult problems in saliency-based image representation is
to design efficient local descriptors that aim at describing the image content in
the neighborhood of each salient area. Usually, these descriptors are designed
by hand and are inspired from intuitive considerations. However, there is no
evidence that the resulting descriptor provides a sufficiently good image rep-
resentation and/or a good discriminative power for an image recognition task.
Finally, when an image is represented by a set of salient zones, the natural order
between pixel values is lost and the image can no longer be seen as a vector,
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increasing thus the complexity of the matching step for assessing the similarity
between images or objects of interest. Classically, image registration approaches
are used but in these cases, salient zones are considered independently of each
others. However, human eyes are able to recognize a scene from a set of focus of
attention and saccadic eye movements, showing that the information is accumu-
lated during these movements. A registration approach is not able to reach this
property since the local information contained in each salient feature ignores the
local information localized in other places of the image. To simulate the image
categorization from saccadic movements, a solution has been proposed in [RL04]
that consists in linking the detected salient features to obtain an attributed string
of local descriptors. An order between salient features is thus recovered and the
matching step can be performed thanks to a string-edit distance.
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Chapter 3

Object Detection and
Recognition

Computer vision was born with the aim at building machines that “can see”
[EC01]. This program has a twofold implication, since it may be intended ei-
ther as a tool to understand the underlying properties and mechanisms of human
vision, or as the theoretical basis for a set of applications aiming at extracting
high level perceptual information from the analysis of natural scenes. The first
aspect is mailnly related to similar applications of artificial intelligence (in the
sense of simulating intelligent behavior); the second aspect is related to emulating
intelligent responses to external stimuli, and has been studying all the perceptual
cues that are useful to extract structure information from image data. A distinc-
tion exists between low-level vision and high-level vision, based on the increasing
structuredness of the specific cues treated as primary data for processing. At-
tempts have been made to integrate different processing levels and different visual
cues.

An extended notion of image analysis and understanding, however, needs
extended concepts of “images” and “objects” to be introduced, which are not
necessarily “natural” : any n-dimensional map of a scalar or vector quantity is
referred to as an image.

The list of different applications of object detection and recognition would
be practically infinite. We can safely say that almost every technological area
is affected by this discipline. Medical diagnosis [BNPS03], industrial nonde-
structive testing [CAC+00], remote sensing [LDZ00], optical character recognition
[VBT02], virtual/ augmented reality [ZCHS03], automatic image and video in-
dexing [BS02], visual databases [FPZ04], security/ surveillance systems [CLK00]
are just a few examples. In particular, remote sensing and security issues are
assuming an increasing importance in facing the present natural or human-made
threats.

Computer vision subfields are now very mature disciplines, in the sense that
they have sound foundations in different branches of mathematics, statistics and
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information theory. Another pointer to maturity is the very large number of
groups and researchers involved in this area, and the wide range of applications,
especially in such fields as face recognition [ZCPR03], where decades of basic and
applied research have produced efficient commercial off-the-shelf systems.

Very robust techniques have been developed and applied successfully in many
real-world applications. Also, this has been made possible by the increasing capa-
bilities of general-purpose and specialized hardware (ultra-fast CPUs, digital sig-
nal processors, etc.), which brought many tasks to quasi-real-time performances.
To exemplify, pattern recognition techniques are being increasigly employed in
medical imaging. Pattern segmentation and recognition are the artificial vision
tools that permit to build robust systems in face and fingerprint recognition, in
security/surveillance applications, and optical character recognition in automatic
text processing. Another emerging field where object recognition has a relevance
is in protection of the intellectual property. Besides common practice applica-
tions, a number of real-world problems remain unsolved for the lack of robust
solutions. Normally, the existing algorithms are effective in at least partially
controlled environments (indoor, structured. . . ), but their performance degrades
in more general cases. Both new insights in image/scene perception theory and
new computational paradigms are now being exploited to solve problems that
lack efficient solutions.

Object detection and recognition, just as all image science, is a highly inter-
disciplinary area. Since its early days, the views of engineers, mathematicians,
physicists, psychologists and computer scientists were put together to find solu-
tions at different levels of imaging and vision problems. All the recent algorithmic
advancements are now being used to improve current solutions or to find solutions
to new problems. Besides the classical tools of functional artificial intelligence
(neural networks and algorithms [CU93]), the fields of statistical image and sig-
nal processing [CiA02] are gaining new importance, also due to the availability
of new probabilistic models and large image databases. New algorithmic ap-
proaches, such as nature-inspired computation [Fre02] [ea00], complex systems
and chaos [BDT99], etc., are also used, often showing both promising results and
new deep insights.

As mentioned above, just a few detection/recognition procedures work ro-
bustly when faced with an unstructured (and dynamically changing) environ-
ment. As an example, we mention again the case of remote sensing and surveil-
lance, with all the related subfields and critical applications, such as pollution
control, disaster management, anti-terrorist measures. On one hand, this depends
on the environment [NS00], but not totally on that [EC01]. The extraction of vi-
sual information can also depend on the attitude of the agent [Mog97]. This fact
has already been recognized in biological visual systems, where the identification
of the different classes in a scene depends on the pre-attentive or attentive mood
and on the specific task being performed. Further theoretical developments and
interaction among different disciplines are needed to attack this problem, whereas
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classifying and recognizing all the objects in a scene still remains impossible. To
find empirically effective and robust applications on the basis of current theo-
retical developments is thus the first challenge for the near future. This is a
nontrivial task when truly real-world problems are to be solved. One of the pro-
posed solutions is to rely on active vision systems [BPPP98], which are able to
enrich the data space by capturing suitably chosen additional images.

Benchmarking

A crucial problem when working recognition systems are to be developed is bench-
marking. Indeed, some standardized procedure to evaluate different products
is necessary, along with a common test database, in order to allow a signifi-
cant comparison to be made. To this end, very large image databases must
be available, whose entries should be as similar as possible to the actual test im-
ages. This means that evaluation procedures and databases should be specifically
application-oriented [ZCPR03]. Some work has been done for optical character
recognition and fingerprint classification [BBT02] [BCG+94], and for face recog-
nition, where, among others, the different releases of the FERET face database
and evaluation procedure are available [PWJR98] [PMRR00]. Benchmarking
is particularly important in the mentioned applications, where many commer-
cial off-the-shelf systems are now available. Refining the evaluation procedures
would further help monitoring the performances of the different algorithms in
their evolutions, and identifying the most urgent and/or promising research ar-
eas. At present, for example [ZCPR03], two major problems in face recognition
are recognition under illumination and pose variations.

This chapter is organized as follows: section 3.1 details approaches for sta-
tistical data processing whereas section 3.2 presents a typology of approaches
for object recognition based on the processed data. Then, the two last sections
deal with specific approaches of detection and recognition for particular classes
of objects: faces in section 3.3 and text in section 3.4.

3.1 Statistical data processing

The basic cue to accomplish object detection, classification and recognition is
the feature. A feature can be any attribute of an image in any relevant space,
such as the original pixel space or whatever other representation space (Fourier,
wavelet. . . ). Any image can thus be described by means of a feature vector.

With “appearance-based vision”, we mean an approach to detect, classify,
and recognize objects on the basis of sets of 2D images, or views. The concept of
appearance-based vision is opposed to the one of “geometry-based vision”, which
relies on matching geometric primitives or templates. In the case of detection
and classification of objects within complicated backgrounds, the appearance-
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based approach has proved to achieve better results than the approaches based
of feature or template matching [ZCPR03].

The “features” on which appearance-based vision has to rely are not predeter-
mined primitives or templates (possibily invariant to particular transformations),
but are implicitly defined from the sample images chosen, from which they are
to be learned [FFFP03] [FPZ03]. This implies that large sets of training images
should be available. Typical tasks are identification (to determine which com-
ponent in a database, if any, is represented in the input image), verification (to
determine whether or not an input image actually corresponds to a particular
object in a database) [ZCPR03], and detection [Ros02] (to determine presence
and location of one or more objects of interest in an image). The choice of the
analysis strategy depends on the final goal.

For appearance-based vision, the pixel (scalar or vector) values can simply be
assumed as image features. This results, in general, in a very high-dimensional
feature space, thus implying the need for dimensionality reduction [BPPP98]
[Mar01] [Nel98]. In any case (whether pixel-based or not), appearance matching
can be performed by global (holistic) or local methods. Among global mehods, we
find, for example, histogram matching and eigenspace representation. The first
approach exploits suitable distances between histograms to establish a similarity
between an input pattern and the items in a database. The second approach
projects the input image onto the subspace spanned by the training set, in order
to find the minimum-distance element and be able to label the input pattern.

The relevant image space can be built, for example, through principal com-
ponent analysis (PCA [CiA02]), or linear discriminant analysis (LDA [BHK97b]
[Mar01]). In the PCA approach, a basis of orthogonal “eigenimages” is found
[Kir90] [PT91], from which it is possible to reconstruct any element of the orig-
inal dataset to a fixed level of accuracy. Projecting an input image onto this
basis and finding the minimum-distance element of the original dataset amounts
to classify (or recognize) the image. The effectiveness of this strategy is based on
data variance, that is, the eigenimages computed are generalized vectors oriented
in the same direction as the eigenvectors of the data covariance matrix. This
is not always a valid criterion to discriminate between different classes. In the
LDA approach (or Fisher analysis), indeed, the selection criterion is based on
maximizing the between-class variances over the within-class variances, instead
of maximizing the data variances.

Both PCA and LDA rely on second-order statistics to reduce the dimension-
ality of the image space. However, important information may be encoded in
higher-order statistics, so that higher-order methods should outperform second-
order methods [BMS02]. In other words, the common redundancy that results
from sensed data is thought of as originated by the combination of independent
components. This is the rationale of the independent component analysis (ICA)
approaches. In [BMS02], two different ICA approaches and a hybrid approach
are shown, with application to face recognition. One possibility is to derive a
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set of independent images on which the training data are projected, as is done
by the PCA approach. In this case, the basis faces are not only uncorrelated,
but independent of each other. Another possibility is to evaluate a number of
components whose combinations can give the individual faces in the database via
independent coefficients. In this way, a factorial code for face images is found.

Statistical data processing has also revealed its usefulness in tasks that are
only indirectly related to object detection and recognition. As ICA is a typical
strategy to perform blind source separation [Hyv00], it can be used to extract or
remove interfering patterns from the raw data prior to proper recognition. This
has been done, by ICA or similar techniques, in astrophysical image processing
[KBP+03] and in document image analysis [TBS04]. In the former case, blind
source separation is used as a sort of object detection tool, aiming at separating
statistically distinct diffuse patterns superimposed to one another. In the latter,
the aim is to reduce or cancel various degradations typically affecting ancient
documents, in order to improve the error rate of optical character recognition
systems or the legibility by a human reader. This can be done by both ICA and
different color decorrelation approaches [TSMB04], among which PCA, applied
to color or multispectral images of the document pages.

When their basic assumptions are not verified, the ICA-based approaches can
fail their goal. Research is being done to extend the conditions of separability in
these cases. Moreover, flexible algorithms are being developed to possibly take
prior information into account, when the problem at hand is not totally blind
(for example, when the statistical distribution of the sources is known, or when
prior knowledge on the data model is available).

In particular, there is an additional hypothesis besides mutual independence
that requires nongaussian distributed sources (except at most one). It has been
shown that, for nonstationary processes, separation can be achieved even if more
than one sources are Gaussian. If the sources are known to possess temporal
structures, then the independence assumption can be dropped. The resulting
separation techniques are commonly denoted as dependent component analysis
(DCA) [Bar00] [Bar01] [BBB+03] [DCP03].

Another hypothesis that does not need to be verified is the linearity of the
source mixture. Especially when there is a sensible within-class variability (see
[BMS02] for face recognition), this hypothesis cannot be considered true. To
overcome this difficulty is not an easy task, and no general solution has been
found so far. Research is active in determining the kind of nonlinearities that
allow the problem to be efficiently solved [CiA02] [YAC98] [Bac02].
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3.2 A typology of methods for object recogni-

tion

Object recognition is the field of automatic description and classification of pat-
terns [DHS00]. The recognition task may be 1) supervised where the object class
is known, and some a priori informations are given or 2) unsupervised where the
object is assigned to unknown class. Interest in the area of object recognition has
been renewed due to the emerging applications such as handwritten identifica-
tion, human/face recognition, image databases browsing, etc. Major approaches
are presented in the following.

3.2.1 Template Matching

Template matching is one of the earliest approaches to object recognition. It is
also known by the name of model-based object recognition [Agg95, Lon98, CF01,
PS00]. The object to be recognized is matched against the template by taking
into account various poses (translation and rotation) and scale changes. The
template and the similarity measure (correlation) are optimized based on the
available training set. Template matching is computationally consuming, but the
availability of faster processors has now made this approach more feasible. The
rigid template matching mentioned above, while effective in some application
domains, has a number of disadvantages. For instance, it would fail if images
presents distortion due to some processing or viewpoint change. Deformable
template models [Gre93, BK89] can be used for object recognition when the
deformation cannot be directly modelled.

3.2.2 Statistical Approach

The goal of the statistical approach is to establish decision boundaries given a
set of training images [HAMJ01]. This boundaries should split feature space
such that different image categories occupy compact and disjoint regions in a
d-dimensional feature space. The effectiveness of the representation space is
determined by how well images from different classes can be separated. In the
statistical decision theoretic approach, the decision boundaries are determined by
the probability distributions of the images belonging to each class, which must
either be specified or learned [DGL96, DHS00, Vap98]. One can also take a
discriminant analysis-based approach to classification : First a parametric form
of the decision boundary (e.g., linear or quadratic) is specified; then the best
decision boundary of the specified form is found based on the classification of
training images. Non parametric approaches based on maximizing the margin
between the decision boundaries and the training samples leads to the SVM
classifiers [Vap98, Bur98, CHV99] (see figure 3.1).
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Figure 3.1: Support Vector Machine is becoming the state of the art of object
recognition using statistical learning approach. It consists in finding a decision
boundary that maximizes the margin between positive and negative training ex-
amples. In this 2D toy problem, positive example are represented with white
circles and negative example are represented with black filled circles. The SVM
maps data into a high dimensional space via kernels where a linear decision
boundary is constructed. Such boundary corresponds to a non-linear one in the
input space which is depicted with a solid line in the figure. One of the advantage
of SVM is that only few training examples (surrounded examples in the figure)
called support vectors are involved in th construction of the classifer. Dotted lines
depict the edge of the margin. The SVM allows also to handle outliers (crossed
examples in the figure) using soft-margin versions.

3.2.3 Syntactic Approach

In many recognition tasks, hierarchical representation is more appropriate to
adopt. The image is viewed as being composed of simple sub-images which are
themselves built from yet simpler sub-images [Fu82, Pav77] called primitives.
In syntactic object recognition, an analogy can be drawn between the structure
of images and the syntax of a language. The images are viewed as sentences
belonging to a language, primitives are viewed as the alphabet of the language,
and the sentences are generated according to a grammar [FB86a, FB86b]. Thus,
a large collection of complex images can be described by a small number of
primitives and grammatical rules. The grammar for each image class must be
inferred from the available training samples. The implementation of a syntactic
approach, however, leads to many difficulties which primarily have to do with the
segmentation of noisy images (to detect the primitives) and the inference of the
grammar from training data.
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3.2.4 Neural Networks

Neural networks can be viewed as parallel computing systems with a large num-
ber of simple processors having many interconnections [Tho96, Zha00, Sme95].
Neural networks have the ability to learn complex nonlinear input-output rela-
tionships [EPdRH02], use sequential training procedures, and adapt themselves
to the data. In spite of the seemingly different underlying principles, most of the
well known neural network models are implicitly equivalent or similar to classical
statistical object recognition methods. In [Rip93] a discussion is given on this
relationship between neural networks and statistical object recognition.

3.3 Faces

3.3.1 Face detection

Many methods for face detection are discussed in the literature, including artificial
neural networks [RBK98] [Sun96], support vector machines [OFG97][EPPP00][RTSB01],
Bayesian inference [CWT00], deformable templates [MYW+99], graph-matching
[LBP95], skin color learning [HAMJ01][SB00] and coarse-to-fine processing [FG01][VJ01].
Distinguishing factors include whether they can solve the face detection problem
with real complex backgrounds and the run-time cost.

Finding faces on simple background

Color provides a computationally efficient method which is robust under rota-
tions in depth, partial occlusions and can be used to model and filter skin color
efficiently from a training set using standard classifiers [SB02, HAMJ01, YLW98,
CG99]. Face detection can also be achieved using motion. The general idea is
to detect differences between the current and the previous frame in a video se-
quence. If the difference between pixel values is greater than a given threshold,
the movement is considered to be significant and the pixel is set to be of inter-
est. Many prior knowledge (cf. below) can be used to decide whether a pixel of
interest belong to a face or not [EJ95, ST98].

It is also advantageous to use prior knowledge. For face detection, we know
that the head is located at the top of the body, that a human normally walks
upright, etc [SP96, YC98]. For example, blinking patterns in an image sequence is
an easy and a reliable mean to detect the presence of a face since blinking provides
a space-time signal which is easily detected and unique to faces [GBGB01]. The
fact that both eyes blink together provides a redundancy which makes it possible
to discriminate faces from other motion in the scene. Furthermore, symmetry
and the fixed separation between the eyes provides a way to estimate the size
and the orientation of the head.
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Finding faces in a complex background

This is the most interesting, challenging, and practical case, since it serves
many applications. The generic approach is based on modeling the face ap-
pearance using an a priori geometric or learned model. Many methods have
been proposed to perform face detection in a complex background using machine
learning techniques such as neural network classifiers [RBK98][SP98], Bayesian
inference [CWT00], support vector machines [OFG97][RTSB01] and eigenfaces
[MP95]. Other techniques are based on the analysis of facial structures, and in-
clude : graph matching [LBP95], geometrical hashing [LSW98], edge counting and
coarse-to-fine processing [FG01], together with AdaBoost [VJ01] and FloatBoost
[LZZ+02]. All these methods operate by extracting windows at different loca-
tions and scales; pre-processing subimages using normalization techniques and
encoding them using an appropriate structure or a feature space. The underlying
extracted information is classified as face/non face using a suitable classifier and
a search strategy. Again, techniques differ in the training model used, the amount
of training data necessary to capture the complexity of the decision boundary, the
facial representation, and mainly the search strategy used to reduce computation.

3.3.2 Face recognition

Public transactions based on passwords, cards, etc., show only that the informa-
tion provided by the user is valid, not that their rightful owner is present. Face
recognition is a science of identification, which substitutes a key or a password
by the facial characteristics which are unique for a given individual. This sci-
ence measures the statistical variability of faces using a human population and
requires a preliminary step of face localization.

At this time it is not yet clear whether face recognition is holistic or a local
task, i.e., if it depends on the whole face characteristics or some of them. In the
human visual cortex, face recognition is a dedicated task different from object
recognition as a dedicated part in the brain is responsible for this task. The psy-
chophysics aspects have been largely studied by biologists in order to understand
face recognition in the human visual cortex [YE89][BHB93] and this will help
developing original and effective face recognition algorithms.

In the remainder of this abstract, we will review the main representative state
of the art techniques for face recognition based on modeling the face appearance.
Existing techniques can be classified either as local or holistic [BP93, LLN00],
they use intensity or infrared images [WPJW96] [SWNE01], their query mode
can be face images or sketches [UL96][Kon96], and the nature of the task can be
identification or verification [ZCR00]. We will illustrate the methods from the
holistic or local processing point-of-views.
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Holistic versus local methods

Holistic methods consider the whole face image in the recognition process. The
basic method is correlation [BP93] which declares two faces as similar if their in-
ner product is relatively high. This method is simple but sensitive to changes in
the viewing conditions and the lighting effects. More sophisticated face recogni-
tion methods have been introduced among them the well studied Eigenfaces and
Fisherfaces [SK87, MN95, PMS94, TP91]. The eigenface method finds the princi-
pal axes, in an Euclidean space, which maximize the variance of the faces through
a training set. Then, faces are projected into a subspace spanned by the principal
axes and the coefficients of projection will be used as a face description. In con-
trast to eigenface, fisherface finds the principal axes which make the between-class
variance large while maintaining faces related to the same individual with a small
within-class variance [BHK97a]. Active appearance models [CWT00, LW99] com-
bine both shape and texture characteristics in order to train a projection matrix
which is used to infer the parameters of face identity, pose and shape variations.
Other methods for face detection, based on statistics and geometry, have been
introduced including optical flow [LCK02], neural networks [CF90, HCZZ00], sup-
port vector machines [JKYL00, GLC00, LGL00], Hidden Markov models [Rig01,
SY94, Nyf95, AB96, Eic02] and linear subspaces [Sha92, OvdM02, BJ03, BH01].
The drawback of holistic methods resides mainly in their sensitivity to partial
occlusion, variations of the contrast and the pose. Local methods have been
introduced to overcome these drawbacks and they usually proceed by extract-
ing some facial components (mouth, nose, etc.) [GHL71, KK72, CB65, Ble66]
[LHLM02, RY92, Hal91, Kan73] and by combining these components using ap-
propriate classifiers [GLC00, HHP01, XPL02, HHP01, GZ01, TV00, CSS00].

Several methods for face component extraction and analysis have been in-
troduced. A generalized symmetry operator is used in [RY92] to find the eyes
and mouth locations. This approach stems from the almost symmetric nature of
the face about a vertical line through the nose and a particular symmetry mea-
sure is maximized. [Hal91] used a template-based approach in order to locate
the facial components. [Kan73] introduced a technique based on the use of a
Laplacian operator in order to obtain a binary image and the facial components.
[BP93] used instead a gradient operator in order to derive their edge map, which
is partitioned into vertical and horizontal image gradients. The horizontal image
gradient is used to extract the left and the right boundaries of face and the nose
while the vertical image gradient is used to detect the head-top, the eyes, the nose
base and the mouth. Face outline detection was performed using dynamic pro-
gramming principle as the outline of a face can be followed by a line, so the order
can be defined without ambiguity. The issues of the accuracy of face component
extraction has been addressed in [Zha99]. In many systems, good recognition
results are dependent on accurate component extraction and registration, so the
performance may degrade when these components are not determined accurately.
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[WFKvdM97] introduced a face recognition algorithm based on graphs. A
face is seen as a graph where its nodes correspond the facial components and the
arc-labels are the distances between these components. The facial components are
extracted by maximizing a correlation between a bunch of Gabor filters related to
a prototype graph. Afterward, each node in the graph is moved locally in order to
maximize further this correlation and to localize the underlying facial component
with higher precision. Face recognition is based on graph matching. In [GHL71,
KK72, CB65, Ble66], the overall configuration of a face can be represented by a
vector of numerical data representing the relative position and the size of the main
facial components and the face outline coordinates. In [LHLM02], the authors
use an augmented Gabor feature vector as a concatenation of multiple responses
of Gabor filters at different orientation, scales and locations.

Statistical methods have also been used to recognize faces using their local
components among them support vector machines [GLC00, HHP01, XPL02] and
Ada-boost [GZ01]. For instance [HHP01] trained many SVM classifiers which
are used as filters in order to locate the facial components (eyes, nose, tips of the
nose, corners of the mouth, etc). The extracted components are used as input to
a multi-class SVM which returns the identity of the aggregate face components.
[GZ01] adapt the Ada-boost method [CSS00] for face recognition. Ada-boost is a
method to combine a collection of weak classifiers (the weak learners are related
to the facial components) to form a strong classifier after many iterations.

Hybrid methods

Hybrid methods and sensor fusion have received significant attention in the last
decade. Sensor fusion has already been used in the combination of speech and
face recognition for person identification. In the work of [GHS+95], the conclu-
sion was that the future in person identification lies in hybrid recognition systems.

The work of [Gor95] was the first attempt to conceive such a hybrid recognition
system combining two template based face recognition systems for both frontal
and profile faces. [AB96] introduced a parallel hybrid recognition system based
on three face classifiers, namely the profile approach by [YJB95], an HMM similar
to the one in [SY94], and the EigenFace approach by [TP91].

3.3.3 Emotions detection

There is a long history of interest in the problem of recognizing emotion from
facial expressions [EF78], and extensive studies on face perception during the last
twenty years [Ekm73] [DM75][SK84]. The salient issues in emotion recognition
from faces are parallel in some respects to the issues associated with voices, but
divergent in others.
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As in speech, a long established tradition attempts to define the facial ex-
pression of emotion in terms of qualitative targets, i.e. static positions capable
of being displayed in a still photograph. The still image usually captures the
apex of the expression, i.e. the instant at which the indicators of emotion are
most marked. More recently emphasis, has switched towards descriptions that
emphasize gestures, i.e. significant movements of facial features.

In the context of faces, the task has almost always been to classify examples
of archetypal emotions. That may well reflect the influence of Ekman and his
colleagues, who have argued robustly that the facial expression of emotion is
inherently categorical. More recently, morphing techniques have been used to
probe states that are intermediate between archetypal expressions. They do
reveal effects that are consistent with a degree of categorical structure in the
domain of facial expression, but they are not particularly large, and there may
be alternative ways of explaining them - notably by considering how category
terms and facial parameters map onto activation-evaluation space [KK00].

Analysis of the emotional expression of a human face requires a number of pre-
processing steps which attempt to detect or track the face, to locate characteristic
facial regions such as eyes, mouth and nose on it, to extract and follow the
movement of facial features, such as characteristic points in these regions, or
model facial gestures using anatomic information about the face.

Facial features can be viewed [EF75] as either static (such as skin color), or
slowly varying (such as permanent wrinkles), or rapidly varying (such as raising
the eyebrows) with respect to time evolution. Detection of the position and
shape of the mouth, eyes, particularly eyelids, wrinkles and extraction of features
related to them are the targets of techniques applied to still images of humans. It
has, however, been shown [Bas78], that facial expressions can be more accurately
recognized from image sequences, than from a single still image. His experiments
used point-light conditions, i.e. subjects viewed image sequences in which only
white dots on a darkened surface of the face were visible. Expressions were
recognized at above chance levels when based on image sequences, whereas only
happiness and sadness were recognized at above chance levels when based on
still images. Techniques which attempt to identify facial gestures for emotional
expression characterization face the problems of locating or extracting the facial
regions or features, computing the spatio-temporal motion of the face through
optical flow estimation, and introducing geometric or physical muscle models
describing the facial structure or gestures.
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3.4 Text extraction methods in images and video

sequences

The volume of data available nowadays in video format makes it necessary to
create tools which allow to extract information from these video sequences in
order to be classified (video indexing) or to be analyzed (video analysis) without
human supervision. However, these tasks are very complex and remain an open
problem. Therefore, the combination of different techniques could be of great in-
terest to help solving this problem. Text extraction can be a key feature because
it is usually synchronized and related to the scene in the sequence, obtaining
extra information about the scene.

The contents in a video sequence can be perceptive, such as colour, shapes,
textures, frequency changes, or semantic, such as objects or events and its re-
lationships. The perceptive ones are easier to analyse automatically and the
semantic ones are easier to handle linguistically. Therefore, since the computa-
tional cost of text extraction is lower than the cost of recognising objects, events
or people, a good option is to detect and recognise text in a sequence.

At the moment there are many algorithms that are able to extract text from
document files (OCR Optical Character Recognition) providing acceptable re-
sults. The main differences between OCR techniques and text recognition in video
sequences are that document files are usually binary images where, of course, let-
ters are static and the background is white or black, while in video sequences
background is complex and characters can move throughout time. OCR will be
the last step in text recognition in video sequences.
Two kinds of text can be found in video sequences :

Scene text : It is composed by text that is integrated in the scene and
is captured directly by the camera. It is more difficult to recognise because it
can appear in any tilt or perspective, different illumination, on both planar and
ridged surfaces, complete or partially hidden.

Caption text : It is the text that is introduced artificially over the frame.
It can be static or in motion, but in any case its aim is to be readable and compre-
hensive by a viewer. In some references it is also called artificial text or graphic
text.

Mainly all the different methods try to detect and recognize caption text, but
some of them show also tools to deal with both texts. A minority is targeting
only scene text. The aim of most methods is to find out the content in the video
sequence, and their results are usually utilised for indexation. In this state of the
art we are focusing on caption text methods.
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3.4.1 Text features

Some of the main caption text features are the following.

Contrast between text and backgroud
Contrast is an important feature since in most images text must be readable, it
cannot be blurred or occluded. Very often a high contrast is required as well as a
steady brightness. One of the main problems localizing text is unsurprisingly the
low contrast and the complex background. When characters have similar hue and
brightness to the background their detection is almost impossible. In these cases,
some enhancement tools must be employed as a pre-processing step in order to
improve the contrast. Some standards for subtitling recommend using a black
background. If coloured background is used then a legible text colour should be
chosen. The most legible text colours on a black background are white, yellow,
cyan and green, but it should be avoided using magenta, red and blue. Moreover,
it has been checked empirically that for caption text there is no rule for choosing
a colour. As a consequence, to avoid the possibility of characters blurring with
background, they are highlighted by increasing the contour contrast.

Spatial cohesion

TYPOGRAPHY : Typography refers to the type of font used. Indeed, some
of them are useful because their structure avoids confusions among the different
letters. This property takes into account not only able people, but physically
handicapped too, like deaf viewers ? This feature doesn’t help directly for the
localization but for character recognition system (OCR).

SIZE : An important fact is that text has to be readable. On one hand,
researchers on vision have investigated human eye resolution, concluding that
when letters are smaller than a minimal size, people cannot differentiate them.
The minimal high and width sizes are approximately 15 and 7 respectively, but
these values differ a little in each article. On the other hand, a maximal size is
also bounded. Other important value is the ratio between height and width of
a letter, which takes values around 0.9. Another size constraint is called word
length or sentence length. Characters have similar heights and spacing within a
text string. Therefore, this feature allows separating words.

COMPACTNESS (or FILLFACTOR) : If a bounding box containing the let-
ter is build, compactness is the relation between pixels belonging to the letter
and those belonging to the background. These features can be applied for both
a simple character and an entire word. Allowed values used to be included in the
interval [0.1, 1] [LE98], but it depends on the authors’ criteria.

HORIZONTAL GEOMETRY : Text possesses certain orientation. To make
text more easily readable it is usually displayed horizontally, in languages that
are written horizontally.

Textured appearance :
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The two previous features, contrast and spatial cohesion, can cause that the text
search turns into texture segmentation. There are some papers which describe
quite well what ’textured appearance’ means, such us : ”For example, by look-
ing at the comic page of a news paper a few feet away, one can probably tell
quickly where the text is without actually recognizing individual characters.”,
see [WM99]. Therefore, considering text as a whole entity, it has enough features
to be detectable as a texture. Problems can appear when image textures and text
features are very similar, like the leaves of a tree or grass in a field. Normally
both textures and edges are fine structures and a level-pixel processing is required
in order to localize and extract them.

Colour homogeneity :
Some papers take colour homogeneity as the main feature, because of the fact
that colour segmentation preserves characters contour better than for example
contrast segmentation, which may blur some edges [LE98]. Colour homogeneity
could be analyzed in two different ways. On one hand, assuming that all the
characters have the same colour, a whole word or line could be detected. On the
other hand, each character might be written in different colour, but the letter
colour itself remains homogenous. Both possibilities can be solved with the same
algorithms. Summing up, monochrome characters are found more frequently than
polychrome. Both of them can be detected with colour segmentation, but perhaps
it could be assumed that polychrome characters are related to some artistic more
than an informative purpose, so that some authors tend to discard this kind of
characters.

Strokes thickness :
Another feature that contributes to the textured appearance of the text is strokes
thickness, because stroke is almost ever uniform. Thickness usually remains con-
stant, except for some typography. In [RDD03] the different features between
Roman languages and non-roman languages can be found. One of them is pre-
cisely the stroke density : in non-roman languages density varies in the character
itself, whereas it remains constant in roman languages. Another attribute related
to stroke is its number in the character, which differs in both languages too. In
Non-roman languages it fluctuates from 1 to 20, in Roman ones the variation is
lower, from 1 to 4.

Temporal uniformity and redundancy :
People need time to read a sentence. This means that if every second 25 frames
are displayed, the same caption text will be overlapped in so many frames as
needed in order to make the sentence readable. Comprehension must be achieved
by the reader at the time of viewing. Vision research has determined that humans
need between two and three seconds in order to understand or process a complex
image. Temporal uniformity affects not only the visualization time, but also
the variation of the text size or their movement throughout the video sequence.
These parameters can not sharply change from frame to frame. In this way this
variation could be detected.
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Mouvement on the frame :
This characteristic is related to the previous feature, but in this case it describes
the most common text behaviour on the screen along the time :

• Static text. Characters present no movement, for example, when the name
of a person appears on the screen, subtitles in a film, the scoreboard in a
match, etc.

• Scrolling and crawling text. Normally it is linearly moving either hor-
izontally from right to left (crawling), or vertically from bottom to top
(scrolling). For example, the opening and closing credits on a film, last
news, share prices information, etc. In roman languages to obtain the
same level of comprehension, scrolling speed should be slower than crawl-
ing speed, because its movement is working against the reader’s natural
reading strategy. However, TV programs time is often limited and this
additional information is not put on the screen to be fully readable.

• Flying text. This is the less common kind of movement. For example, it
could be found in some TV advertisement and its movement is free, not
predictable. As some papers stress, see [LE98], caption text aim doesn’t fit
with the effect achieved with flying text. In other words, flying text is not
intended to give more information, but to attract attention. Its detection is
also possible, but computational cost increases and the advantages of both
temporary uniformity and movement cannot be exploited. Moreover, this
kind of text is more artistic and does not always have the same features,
such as same character size or colour.

Due to the fact that flying text is quite improbable and usually not very interest-
ing, when text candidates present neither static nor linear motion, candidate text
blocks can be discarded. On the other hand, velocity is another discarding ele-
ment. When candidate regions are moving faster than a threshold [pixels/frame],
the regions are not designed in order to be read.

Position in the frame :
The main aim in this case is to avoid obscuring any important part or activity
in the frame. Normally caption text is superimposed on the same area, which
means caption text is normally found centred at the screen bottom. But it can
be placed in a more appropriate place (e.g. football match scoreboard : top
left/right corner). Sometimes, when the caption text in a frame is replaced for
another one in a consecutive frame, the position of this new information differs
a little with regard to the previous one.
In the literature, algorithms can be divided in two big groups, those that work
in the compressed domain and those that work in the spatial domain. Many of
them use the following parameters in order to evaluate its behaviour :

Recall Recall = Correct
(Correct+FalseNegatives)
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Precision Precision = Correct
(Correct+FalsePositives)

where False Negatives are those characters, which have been discarded, and
False Positives are those objects belonging to the background, which have been
taken as characters.

3.4.2 Compressed domain techniques

In this group we include algorithms that are both in the compressed and in the
semi-compressed domain.

Compressed domain : The only reference has been found in [ADS02]. It is
based on the localization of static characters over background in motion taking
into account the macro-blocks belonging to P frames (MPEG-4). Moreover it as-
sumes that text has horizontal geometry, that it does not occupy the whole frame
and that it has to appear at least in three frames. These three features allow
the algorithm to isolate macro-blocks and to determinate if the macro-blocks are
candidates to contain text. Both recall and precision are high in those sequences
with moving background and static text, like sports sequence (e.g. score in a
football match). But it cannot be used in sequences containing moving text or
static background.

Semi-compressed domain : This section is called semi-compressed do-
main, because algorithms don’t work directly with macro-blocks but analysing
the DCT (Discrete Cosinus Transformation) components [ADS02], [COB04] and
[ZZJ00]. DCT plus motion compensation are utilised in the MPEG standard
video compression in order to reduce spatial redundancy in a frame and tempo-
ral redundancy in consecutive frames, respectively. DCT coefficients represent
spatial and directional periodicity. Thus, low level features can be directly ex-
tracted from compressed images. AC coefficients from horizontal harmonics show
horizontal intensity variations; therefore, they would be high in case of having a
text line. On the other hand, AC coefficients from vertical harmonics show verti-
cal intensity variations; they would be high in case of having more than one single
text line. In [SS96] a detailed explanation about the DCT coefficient meaning can
be found. The DCT block size, the character size and their ratio are important.
For instance, if each letter is bigger than the block size we will be evaluating a
single letter stroke intensity variation, but not text intensity variation relative
to the background. In the same way if the letter size is too small any texture
could be analogous to text and easily confused (e.g. grass field). In [ADS02]
the algorithms are classified in edge-based method and correlation methods. The
Edge-based methods take into account contrast between text and background,
this is the reason why as a first step they calculate the Horizontal Intensity Vari-
ation in the DCT coefficients. The Correlation method [GAK98] is applied only
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when a shot changes, so a shot detection must be previously done. In order to
detect if the new shot contents text the intra-coded blocks increment is calcu-
lated in the B- and P-frames. Once the candidate blocks are chosen some text
features are applied, such as that characters are made of strokes and its colour
homogeneity and horizontal geometry, in order to localize text. In [ZZJ00] this
method is commented and discarded due to its vulnerability to scene changes.

Some other transformations could be used like the DWT (Discrete Wavelet
Transform). This transformation gives more information than the previous one
because spatial information is not lost with the transformation. Therefore, those
areas with high values in high frequencies can be more easily found. Both [LDK00]
and [LDK98] suggest wavelet transformation because of its capability to preserve
spatial information. The text boxes are found through a hybrid : wavelet trans-
formation and neural network. From the WT output some relevant statistical
features can be chosen. In particular the more discriminant are the mean, the
second and third order level calculated from the HL, LH and HH sub-bands.
These vectors are used as input in a neural network.
In [CG96] some other transformations such as DHT (Discrete Haar Transform),
DFT (Discrete Fourier Transform) and WHT (Walsh-Hadamard Transform), as
well as the DWT (Discrete Wavelet Transform) are explained.
As a pre-processing tool, in [ZRC02] this kind of algorithms is used in a first step
to localize candidate areas.

3.4.3 Spatial domain techniques

Those methods that work with the pixel values and positions are called methods
in the spatial domain and they can be classified according to the following image
features :

• Edge-based [AD99],[ADS02],[HCWZ01] and [AK97]. Methods in this group
are focused in the search of those areas that have a high contrast between
text and background. In this way, edges from letters are identified and
merged. Once these regions are recognised, spatial cohesion features are
applied in order to discard false positives.

• Connected Components-based [LS96] and [Lie98]. These methods use a
bottom-up approach by grouping small components into successively larger
components until all regions are identified in the image. Also in this case
spatial cohesion features are applied.
Both edge-based and Connected Components-based methods could be in-
cluded under the same group, region-based methods.
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• Texture-based [JB92],[JY98],[LDK00],[WM99] and [WMR97]. In this we
can include many of the existing methods : they use the property that text
in images have distinct textural properties that distinguish them from the
background. Example are those which use the Gabor filter [JB92], Gaus-
sian filter [WMR97] or those based on the colour and shape of the regions
[WM99] and [JY98]. If we had not classified into spatial and compressed
domain, those methods based on wavelet or FFT would accomplish this
textural properties.

• Correlation-based [WC03]. These methods can be summarized as those
that use any kind of correlation in order to decide if a pixel belongs to a
character or not.

• Others [Tan02]. All the methods that have been mentioned don’t use tem-
poral information or use it as a complementary tool. In [Tan02], temporal
information is the main feature. After applying a shot detection technique,
a vector through time for each pixel is calculated in a set of frames. The
authors prove that, computing the PCA for each vector, feature vectors
related to the background can be separated from those related to text.
The main problem of this method is that it only can be applied when the
sequence has static text and a moving background.
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Chapter 4

Spatial relations and geometrical
configuration

This chapter presents more fondamental concepts of signal processing, with the
idea to exhibit relevant image representations that can be applied or adapted to
content-based retrieval. In particular, a state of the art on multiresolution rep-
resentations of the signal is proposed in section 4.1. The paradigm of multires-
olution is introduced, while the study mainly focuses on pyramid and wavelet
representations. In section 4.2, the problem of image segmentation is investi-
gated, by presenting the different existing methodologies according to classical
mathematical concepts.

4.1 Multiresolution and content-driven repre-

sentations

4.1.1 Classical approaches for multiresolution representa-

tions

There are several ways to transform one representation of a given signal into an-
other one. The most classical example is the Fourier transform, where a signal
is decomposed into sinusoidal waves. Such a decomposition gives the intensity
of the fluctuations (frequencies) in the signal which is often of great importance.
However, due to the infinite extent of the sinusoidal functions, any local signal
characteristics (i.e., an abrupt change in the signal) are spread over the entire
representation, thus making them ‘invisible’. This is a serious drawback since
singularities and irregular structures often carry the most important information
in signals. For instance, in images, discontinuities in the intensity may provide
the location of the object contours which are particularly meaningful for recog-
nition purposes. For many other types of signals such as electro-cardiograms
or radar signals, the interesting information is given by transients such as local
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extrema. Furthermore, such singularities usually occur with different location
and localization (i.e., range, scale) in time and frequency. Consequently, trans-
form methods that represent the signal at multiple scales are better suited for
extracting information than methods that represent the signal at a single scale.

Over the last century, scientists in different fields struggled to overcome limi-
tations of the Fourier transform and to build representations of signals that are
able to adapt themselves to the nature of the signal. On the one hand, to ‘pick
up’ the transients without giving up the frequency information, the signal should
be decomposed over functions which are well localized in time (or space) and
frequency. This leads to so-called time-frequency representations. On the other
hand, since signal structure depends on the scale at which the signal is being per-
ceived, it should be analyzed at different scales or levels of resolution. This results
in so-called multiresolution representations which, besides a time parameter, also
contain a scale parameter.

4.1.2 Multiresolution approaches

MR methods span a very broad array of concepts and approaches. In this report,
we will mainly focus on pyramid and wavelet representations. There are, however,
many other MR techniques such as quadtrees, multigrid methods and scale-space
representations, to name a few. They have the ‘multiresolution paradigm’ in
common, but apart from that they differ in many respects, both in theory and
in practice.

Pyramids

Pyramids have been recognized early as an interesting tool for computer vi-
sion and image coding [BA83]. A classical pyramid scheme consists of three
steps : (i) deriving a coarse approximation of an input image, (ii) predicting
this image based on the coarse version, and (iii) taking their difference as the
prediction error. This defines the analysis part. At synthesis, the prediction error
is added back to the prediction from the coarse version, guaranteeing perfect re-
construction. Iteration of the analysis part over the coarse approximation yields
a pyramid representation of the original image as an approximation image at the
lowest resolution and a set of detail images at successive higher resolutions.

Wavelets

Wavelets[Mal89] are functions that are well localized in time and frequency
and that can be used to decompose a signal into different frequency bands with
different time resolutions. This leads to the wavelet transform. Of particular
interest is the discrete wavelet transform, which applies a two-channel filter bank
(with downsampling) iteratively to the low-pass band (initially the original sig-
nal). The wavelet representation consists then of the low-pass band at the lowest
resolution and the high-pass bands obtained at each step. This transform is in-
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vertible and non-redundant. As such, the corresponding decomposition differs
from various other MR decompositions such as pyramids, which are redundant,
and scale-spaces, which are non-invertible in general. Both aforementioned prop-
erties, i.e., invertibility and non-redundancy, turn the discrete wavelet transform
into a highly efficient and applicable representation for a broad range of signal
and image processing tasks such as denoising and, particularly, compression.

The wavelet decomposition (and reconstruction) of a discrete signal from a
resolution to the next one is implemented by a two-channel perfect reconstruction
filter bank such as in Fig. 4.1.

// h̄ // ONMLHIJK↓ 2 // xk+1 // ONMLHIJK↑ 2 // h

��
xk 76540123+ // xk

// ḡ //

Analysis

ONMLHIJK↓ 2 // yk+1 // ONMLHIJK↑ 2 // g

Synthesis

OO

Figure 4.1: Perfect reconstruction filter bank with low-pass and high-pass analysis

filters h̄, ḡ, respectively, and low-pass and high-pass synthesis filters h, g, respectively.

There exists a great variety of wavelet families depending on the choice of the
prototype wavelet or, alternatively, the filter’s coefficients. However, imposing
additional requirements such as orthogonality, symmetry, compactness of sup-
port, rapid decay and smoothness limits our choice. The ‘optimal’ choice of the
wavelet basis will depend on the application at hand, and therein lies part of the
difficulty of building a suitable wavelet representation.

Most wavelet (and pyramid) transforms have been designed in the one-dimensional
case. By successive application of such one-dimensional transforms on the rows
and the columns (or vice versa) of an image, one obtains a so-called sepa-
rable two-dimensional transform. Non-separable transforms can also be con-
structed [HG00, KV92]. Although they provide decompositions with more general
properties, they have been used less often in image applications due to the lack
of general tools for their design.

4.1.3 The need for adaptive wavelets

Wavelets have had a tremendous impact on signal processing, both because of
their unifying role and their success in several applications. The applicability
of the wavelet transform (as well as for other MR decompositions) is somewhat
limited, however, by the linearity assumption. Coarsening a signal by means
of linear operators may not be compatible with a natural coarsening of some
signal attribute of interest (e.g., the shape of an object), and hence the use of
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linear procedures may be inconsistent in such applications. In general, linear
filters smear the singularities of a signal and displaces their locations, causing
undesirable effects.

Moreover, standard wavelets are often not suited for higher dimensional sig-
nals because they are not adapted to the ‘geometry’ of higher dimensional sig-
nal singularities. For example, an image comprises smooth regions separated by
piecewise regular curves. Wavelets, however, are good at isolating the discontinu-
ity across the curve, but they do not ‘see’ the smoothness along the curve. These
observations indicate the need for MR representations which are data-dependent.

The importance of such ‘data-driven’ representations has led to a wealth of
new directions in multiresolution approaches such as bandelets [LM00], ridgelets [Don98],
curvelets [Can01], morphological wavelets [HG00], etc., which go beyond standard
wavelet theory.

We will look for adaptive (i.e., content-driven) transforms which retain the
desirable properties of the standard wavelet transform (e.g., non-redundancy and
invertibility) while exploiting, in a simple way, the geometrical information of the
underlying signal. This will allow for a better localization and representation of
the singularities, as well as for sharper (perceptually better) approximations at
lower resolutions.

In [PH02, PPPH02, HPPP03, HPPP04] we have presented the construction of
adaptive wavelets by means of an extension of the lifting scheme. The basic idea
is to choose the update filters according to some decision criterion which depends
on the local characteristics of the input signal. In this way, only homogeneous
regions are smoothed while discontinuities are preserved. An interesting aspect
of our approach is that it is neither causal nor redundant, i.e., it does not require
any bookkeeping to enable perfect reconstruction. We show that these adaptive
schemes yield lower entropies than schemes with fixed update filters, a property
that is highly relevant in the context of compression. Despite all these attrac-
tive properties, a number of open theoretical and practical questions need to be
addressed before such schemes become useful in signal processing and analysis
applications. For example, we need to get a better understanding how to design
update and prediction operators that lead to adaptive wavelet decompositions
that satisfy properties key to a given application at hand. In our work, we have
focused on binary decision maps and as a result, the adaptive scheme can only
discriminate between two ‘geometric events’ (e.g., edge region or homogeneous
region). In order to deal with the great richness of real-world signals and im-
ages, one must be able to incorporate the geometrical structure of the signals, for
example, by using multiple criteria.

Another issue that needs to be addressed is the stability of the scheme. In
particular, the behavior of the adaptive scheme under quantization needs a more
thorough investigation. Stability of decompositions is of utmost importance when
they are being used in lossy compression schemes for image or video coding.
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4.2 Image Segmentation

Image segmentation can be described as the process of partitioning the image
into disjoint regions, each one being homogeneous and connected with respect
to some cue(s), such as image intensity, texture, color, etc. Image segmentation
methods can be classified as boundary-based, which generate an edge image which
delineates the segments of the image, or region-based, which group image pixels
based on the homogeneity of spatially localized features.

The cues that lead the segmentation process include most commonly image
intensity, and usually additional features, like color and texture features, or mo-
tion and depth estimates. The incorporation of multiple-cue information in a
segmentation process increases the potential of producing better results, when
the corresponding features are treated appropriately.

Computer vision researchers have used different methodologies to attack the
segmentation problem. The discrimination of different methodologies will be
done according to the mathematical methodology they employ; the segmentation
categories that will be presented are the following :

• Variational methods

• Statistical methods

• Graph-based methods

• Morphological methods

In the rest of this report, we will refer to recent advances in these four domains
and present how they deal with multiple cues.

4.2.1 Variational Methods

In the variational framework the solution to the segmentation problem is ex-
pressed as the minimization of some energy functional J defined on partitions
R = R1...N of the image domain Ω; J is commonly expressed in terms of the
contours ∂Ri and the interiors Ri of the image segments :

J(R) =
N

∑

i=1

∫

Ri

f(x, Ri)dx +
N

∑

i=1

∮

∂Ri

g(s)ds (4.1)

In the above formula f quantifies the homogeneity of the features at location x
with those of region Ri and g(s) is a decreasing function of edge strength.

Active Contours/Snakes : In the setting of Active Contours a closed curve
or set of curves enclosing some initial region(s) is given, and we wish to modify
them until they come into alignment with the contours of prominent image ob-
jects. This is accomplished by evolving the contour in the direction of steepest
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descent of the energy functional and regarding as a solution a location where the
contour no longer changes with time. This is accomplished mathematically by
deriving a partial differential equation (PDE) from the Euler-Lagrange equations
corresponding to the energy functional and then solving numerically this PDE.

This idea was first introduced in the purely boundary-based method of Snakes
in [KWT87], which were implemented using splines to parametrize the evolving
curves; the fact that the number of objects detected could not dynamically change
limited their applicability since a good initialization is almost always essential.

Geodesic Active Contours : One of the primary developments in the field
of active contour models in the last decade has been the reformulation in [CKS97]
of the Snakes model as the computation of geodesics, with respect to a metric
defined using the image. This gave rise to the Geodesic Active Contour model
(GAC), which is parametrization free, and where the geodesic curve computation
is reduced to the numerical solution of a geometric flow. This geometrical flow
can be efficiently solved numerically using level set methods [Set96], where the
contour is represented as the zero level-set of a 3D function. Thereby the evolving
contours naturally split and merge, allowing the simultaneous detection of several
objects. Still, a specific initialization step is necessary, where the initial curve
should lie completely exterior or interior to the object boundaries.

Active Regions : Along a different line, based primarily on the (region
based) Mumford-Shah functional [MS89a], variational methods have been de-
signed to deal with multiple cues [ZY96] and have been later rephrased [PD02] in
terms of geometric curve evolution schemes implemented using level set methods
[Set96]. Specifically, in [PD02] the boundary and region based terms have been
brought together, so that the curve evolution is driven by both statistical terms
as in [ZY96], and geometric terms as in [CKS97]. In [CV01a] a special case of
the Mumford-Shah functional is used to give rise to purely region-based curve
evolution equations which are implemented using an efficient variation of level
set methods.

Unsupervised Methods, Prior Information : In [RBD03] an unsuper-
vised textured image segmentation method is proposed, which extends and sim-
plifies the methods of [PD02]. This scheme simultaneously updates the regions
and the parameters of the distributions, thereby dynamically learning the model
of each region. Another active field deals with the incorporation of prior knowl-
edge about the desired segmentation, like shape knowledge [RP02, CSS04].

Multiple Cues : Multiple cues are dealt with using a statistical model to
express the feature similarity term within each region; intensity, texture, motion,
etc. features are merged in a vector of random variables which is assumed to follow
a region-specific multivariate distribution. The only modification of the evolution
equations is then in the region-based term, which uses a high dimensional vector
to determine the corresponding forces, as in [ZY96, PD02, RBD03, BRDW03].
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4.2.2 Statistical Methods

Another approach to segmentation considers the segmentation labels as a random
field, and recasts the segmentation problem as a problem of deriving estimates
from this field, like Maximum-A-Posteriori (MAP), or Minimum Mean Squared
Error (MMSE) estimates.

Markov/Gibbs Random Fields : By assuming that each segmentation
label conditioned on its neighbors is independent of the rest of the field leads
to the Markov Random Field (MRF) model. These dependencies between the
labels xi, xj at neighboring nodes in an MRF are encoded in the clique potentials
Ψ(xi, xj), while the influence of the observed data is encoded in the observation
potentials Φi(xi). The energy of a configuration X = {x1, . . . , xN} is then given
by

E(X) =
∏

i

Φi(xi)
∏

xj∈Ni

Ψ(xi, xj) (4.2)

The Gibbsian probability of X is related to its energy by Boltzmann’s law :

P (X) =
1

Z
e−E(X)/T (4.3)

Efficient Inference Algorithms for MRFs : Despite their flexibility and
their robustness compared to variational algorithms, MRF-based segmentation
algorithms had fallen into dismay during the previous decade, since the stochas-
tic relaxation-based algorithms that dominated research in the 1980’s [GG84]
were not fast enough for practical applications. During the recent years interest
in MRFs has resurged due to the introduction of efficient algorithms for infer-
ence, based on deterministic, local computations [YFW01]. The Belief Propa-
gation (BP) algorithm has been used since the 1980’s for inference on random
fields, where the dependencies between the random variables can be expressed
in terms of a graph without loops. The results obtained in this case are exact
and variations of the same algorithm can be used for deriving MAP estimates
and estimating the marginal distributions at nodes. Applying the BP algorithm
on graphs with loops (like MRFs for low-level vision) gives rise to the Loopy
Belief Propagation (LBP) algorithm which, even though not guaranteed to give
the exact estimates, gives very good results in practice. Theoretical justifications
for the application of the LBP algorithm have established links with the Bethe
approximation from statistical physics. In [FH04] specially designed LBP algo-
rithms for computer vision are proposed that are shown to result in substantial
speedups.

In [BZ03] a sampling method from Statistical Physics, Swendsen Wang Cuts,
has been modified to be applicable to MRFs for computer vision. Samples are
drawn from the posterior probability of the MRF’s configurations efficiently, by
flipping clusters of labels which significantly speeds up inference. A closely related
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algorithm devised for inference on MRFs is the Graph-Cuts algorithm which is
described in the following section.

Generative Models : Another active field of research in statistical meth-
ods for image segmentation is the field of generative models-based segmentation
(and vision in general). The idea is to construct statistical models of the ap-
pearance of each region, and then assign the observations in the image to the
region that explains them best. Most important contributions in this field in-
clude [ZY96, TZ02, TCYZ03], which have given rise to impressive segmentation
results. In this work, image segmentation is posed as parameter estimation,
where the parameters include a) the boundaries of the regions, b) the type of
each region (e.g. texture, intensity, face regions) c) the parameters of the gen-
erative model describing the features within each region and d) the number of
the regions. The observed data is the image itself, and image segmentation and
parsing is interpreted as sampling from the posterior on these parameters. In case
the the only regularity enforced on the segmentation labels is that of minimum
boundary length, the inference of the region labels given all the other parameters
can be speeded up using a variational algorithm like active regions which is then
interpreted as a greedy (non-stochastic) search in the posterior distribution of
labels.

Multiple Cues : The conventional statistical approach, which has also been
adopted by variational methods, groups the features from all cues in a vector of
random variables and has been described in the previous section. In [TZ02] an
alternative method is used to allow each region to be either a texture, a color
region or any other categorical type of regions, by stochastically performing jump
moves in the posterior distribution of the segmentation parameters. This makes
it possible to choose among the cues that are used to perform segmentation in
an elegant and theoretically sound way.

4.2.3 Graph-based Algorithms

Graph Theoretic Algorithms represent the image as a weighted graph, where
the nodes are image pixels and the edge weights encode the information avail-
able about the desired segmentation : this can be either in the form of pairwise
weights, like in the case of MRFs, or bottom-up knowledge, like the output of
some edge-detector, which indicates that two nodes (pixels) should belong to dif-
ferent segments. The segmentation is determined, using techniques from graph
theory, by finding a partition (cut) of the graph such that a criterion is (min-)
maximized.

Graph Cuts : Graph Cuts [BVZ01] have been devised to perform efficient
inference of the MAP estimate on MRFs, and they are guaranteed to converge
to a solution that is at least equal to a fixed fraction of the global optimum.
By a combination of swap moves the segmentation labels are changed in clusters
which results in important speedups in the convergence rates. Specifically, even
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though the inference of the MAP estimate is NP hard, based on classical computer
science algorithms for graphs, the complexity of estimating a suboptimal solution
is reduced to polynomial in the product of the number labels and pixels. This
method has been also applied to minimize the cost function of the geodesic active
contour model [BK03].

Normalized Cuts : Based on a different approach, in the Normalized Cuts
algorithm [SM01] a graph is constructed where all the pixels-nodes in the image
are connected, with weights on the graph determined by the affinity (in feature
space and in location) of the pixels. The problem of segmentation is then phrased
as determining a partition of the graph, where the affinity of the nodes ‘lost’ by
separating the graph (the cut) is minimal when divided by the total affinities of
each cluster to the whole graph (the normalization). Thereby, even though sepa-
rating a single node into a cluster may result in a low cut value, when normalized
this will be close to the maximum normalized cut value. The partitions are cal-
culated by considering initially the labels of the nodes continuous, solving an
eigenvector problem and then discretizing the eigenvectors. This algorithm gives
state of the art results and has been extended to deal with motion segmentation
and object-based segmentation.

Minimal Path Finding Methods : In [MM99] the image is considered as
a graph where the nodes are either the pixels of the image or regions (tiles) of
the mosaic (fine segmentation) of the image and the segmentation is equivalent
to finding the shortest distance on the graph or the minimum spanning tree,
where the distance is defined as the length of some path. Depending on the
way that the path is defined, e.g shortest path, cheapest path, easiest path,
different segmentation schemes occur. In [CK97] the problem of segmentation is
investigated using a minimum path approach : the global minimum attainable
by an active contour is detected between two end points, by modifying the model
energy to include an internal regularization term in addition to the external
potential term. In a similar manner, the proposed approach in [AC04] relies on
some kind of energy partition of the image domain, where the energy is defined
by measuring a pseudometric-based distance to a source point; thus, the choice
of an energy and a set of sources determines the tessellation of the domain.

Multiple Cues : Multiple cues are integrated by expressing the weights
between nodes as the product (or maximum) of the weights corresponding to
each cue. For example in the normalized cuts method, affinity terms based on
texture features are multiplied with affinity terms based on pixel proximity as
well as edge-based affinities etc.

4.2.4 Morphological Methods

Mathematical morphology is a nonlinear image analysis methodology that is pri-
marily based on set- and lattice- theoretic approaches whose goals are to quantify
the geometrical structure of images. Among the morphological methodologies
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that have been developed for various image analysis tasks, the most prominent
segmentation methodology proposed is the watershed transform.

The idea of the watershed-based morphological segmentation can be summa-
rized in three stages. At a first stage the image is simplified and processed in such
a way that the presence of noise is reduced and useless (redundant) information is
removed, thus producing an image that consists mostly of flat and large regions.
The second stage involves the region-feature extraction, where the goal is to ex-
tract some special features such as small homogeneous regions, called markers,
which will be used as the starting points for the flooding process. The selection
of the markers is probably the most difficult task and the strategies for finding
them are diverse and problem dependent; many case studies are listed in [MB90].
The last stage is the application of the watershed transform, where a gradient
image is constructed and its topographic surface is flooded by sources placed
at the position of the markers. The watershed construction grows the markers
until the exact contours of the objects are found. Catchment basins without
sources are flooded by already flooded neighboring catchment basins. In order
to avoid the merging of lakes produced by different sources, dams are erected to
keep them separated. The set of dams constitutes the boundaries of the resulting
segmentation.

This model of segmentation has been extendedly studied and used during
the past years. Compared to the other segmentation methods, the watershed
has several advantages, including the proper handling of gaps and the placement
of boundaries at the most significant edges. Despite its success it has reached
its limits as new segmentation needs have appeared, which have triggered the
development of a rich and coherent framework able to deal with a large variety of
segmentation tasks. Today, mathematical morphology proposes a series of tools,
to be used in a sequence or combined with the classical watershed model, in order
to satisfy the present segmentation needs :

Multiscale segmentation : The use of multiple scales appears to be an
essential part for all types of morphological segmentation whether they are auto-
matic or interactive. A multiscale segmentation can be produced by the progres-
sive merging of regions, and extraneous knowledge can be incorporated in this
process [MM99]. Useful partitions can be extracted from multiscale representa-
tions of the image, with a degree of coarseness that can be determined through
interaction with the user.

Generalized floodings : In [Mey99, Mey00] F. Meyer presented several
particular modes of flooding, in order to properly segment different types of
images. Synchronous flooding is investigated, where all lakes share some common
criterion, such as altitude, depth, area or volume. He also established a continuum
between multiscale segmentation and segmentation with markers by using fuzzy
markers : sources are placed, whose flood is slowed down by a factor associated
to each marker. In [MV02], in order to introduce geometrical regularization
constraints in a morphological segmentation scheme and make it comparable to
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energy-driven methods, the computation of the watershed on a smooth relief by
implementing viscous flooding has been proposed.

Levelings : Without prior filtering an image contains numerous tiny and
meaningless homogeneous zones. For this reason, filtering before segmenting is
often mandatory. The levelings [MM00] are novel object-oriented morphological
filters, which enable the separation of homogeneous zones from the transition
zones. Homogeneous zones can thus be enlarged, without blurring or displacing
the contours : for this reason its is possible to directly segment the filtered image,
with no need to go back to the original image.

PDE formulation of watershed transform : Maragos and Butt [MB00]
explore the common theoretical concepts, tools, and numerical algorithms used
in differential morphology and curve evolution. They focus on morphological
operator representations for curve evolution as well as evolution laws for various
morphological curve operations and distance transforms and consider them as the
major route to connect differential morphology and curve evolution to the eikonal
PDE. A minimum distance algorithm is derived for the watershed; in a continu-
ous formulation, this is modelled via the eikonal PDE, which can be solved using
curve evolution algorithms. They introduce the implementation of the watershed
transform via the eikonal PDE. Another approach to the PDE formulation of
the watershed transform was proposed in [NWB03], where watershed segmenta-
tion is represented as an energy minimization problem, using the distance-based
definition of the watershed line. A priori considerations about smoothness are
then be imposed by adding the contour length to the energy function. This leads
to a segmentation method called Watersnakes, that integrates the strengths of
watershed segmentation and energy based segmentation, in a PDE formulation.

Lattice-theoretic segmentation and Connectivity : In [Ser00] Serra
investigated the problem of segmentation from the viewpoint of the algebraic
lattice of image partitions. His approach is based on a new concept of connectivity
defined on algebraic complete sup-generated lattices.

Multiple Cues : Multiple Cues come into play when estimating the gradient
image, by using edge detectors that combine multiple cues. As an alternative,
in [VPS03] a hierarchical method is proposed where a scale-space edge detection
scheme is derived by the vector-valued diffusion of multiple cues.

4.2.5 Benchmarks and comparatives

Only recently has a common benchmark been made available for public use :
in the Berkeley Segmentation Dataset (4.2.6) thousands of manually segmented
images have been made available, so as to systematize the comparison among
image segmentation methods.
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4.2.6 Useful URLs

Variational Methods :

The Odyssee team (PDEs for segmentation) :
http://www-sop.inria.fr/odyssee/research/1/index.en.html

Level-set methods for computer vision :
http://www.math.ucla.edu/~imagers/

Statistical Methods :

The UCLA team’s work on statistical methods for segmentation :
http://civs.stat.ucla.edu/Segmentation/Segment.htm

The Pattern Theory Group :
http://www.dam.brown.edu/ptg

Graph based Methods :

The Berkeley vision group segmentation project & normalized cuts :
http://www.cs.berkeley.edu/projects/vision/Grouping/overview.html

http://www.cis.upenn.edu/~jshi/

Graph cuts and belief propagation for vision :
http://www.cs.cornell.edu/vision/

Benchmarks :

The Berkeley segmentation benchmark :
http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

4.2.7 Prior-based Segmentation in the Variational Frame-
work

From Occam’s Razor to Mumford-Shah

Image segmentation is a key element in the extraction of semantic content from
images. It transforms the voluminous and intricate raw pixel data to a compact
set of potentially meaningful segments. Classical methods for object segmentation
and boundary determination rely on intrinsic local image features such as gray
level values, texture features or image gradients. However, when the image to
segment is noisy or taken under less than ideal illumination conditions, the use
of a-priori knowledge is essential.

A-priori knowledge regarding image structure can be obtained from various
sources. We distinguish between generic prior knowledge, that applies to most
images, to application-specific prior knowledge. Notable examples for generic
prior knowledge are the principle of parsimony (Occam’s Razor) [Hey97] and the
Gestalt principles of perception [Kof63]. In contrast, shape priors are generally
application specific.

The incorporation of a-priori knowledge in image segmentation is not trivial.
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The challenge is to represent the a-priori knowledge in mathematical terms that
can be linked to a segmentation algorithm. For example, the generic principle
of parsimony is the basis of the Minimum Description Length (MDL) [BRY98]
approach. However, the seemingly appealing straightforward representation of
parsimony using Kolmogorov complexity [LV97] can lead to computationally in-
tractable algorithms.

In their seminal paper, Mumford and Shah [MS89b] casted the segmenta-
tion problem as a functional minimization problem. The functional consists of
a fidelity term, that quantifies the discrepancy between the segmentation output
and the input image data, and two additional terms that represent, in fact, the
principle of parsimony. One measures the non-uniformity within segments, the
other evaluates the total length of boundaries segment boundaries.

From Mumford-Shah to Chan-Vese

Formally, Mumford and Shah [MS89b] proposed to segment an input image
f : Ω → R by minimizing the functional

E(u, C) =
1

2

∫

Ω

(f − u)2dxdy + λ
1

2

∫

Ω−C

|∇u|2dxdy + ν|C| , (4.4)

simultaneously with respect to the segmenting boundary C and the piecewise
smooth approximation u, of the input image f . The functional minimization
problem is approached via the calculus of variations. Straightforward minimiza-
tion is not trivial, due to the dependence of the integration domains on the
unknown segmentation. This technical difficulty can be alleviated using, e.g., the
Γ-convergence framework [AT90].

When the weight λ of the smoothness term tends to infinity, u becomes a
piecewise constant approximation, u = {ui}, of f . The functional can now be
expressed as

E(u, C) =
1

2

∑

i

∫

Ωi

(f − ui)
2dxdy + ν|C| ∪iΩi = Ω, Ωi ∩ Ωj = ∅ (4.5)

In the two phase case, Chan and Vese [CV01b] used a level-set function φ ∈ R
3 to

embed the contour C = {x ∈ Ω| φ(x) = 0} [OS88], and introduced the Heaviside
function H(φ) into the energy functional:

ECV (φ, u+, u−)=

∫

Ω

[(f − u+)2H(φ)+ (f − u−)2(1 − H(φ))+ ν|∇H(φ)|]dxdy

(4.6)
where

H(φ) =

{

1 φ ≥ 0
0 otherwise

(4.7)



80CHAPTER 4. SPATIAL RELATIONS AND GEOMETRICAL CONFIGURATION

Using Euler-Lagrange equations for the functional (4.6), the following gradient
descent equation for the evolution of φ is obtained :

∂φ

∂t
= δ(φ)

[

ν div (
∇φ

|∇φ|
) − (f − u+)2 + (f − u−)2

]

. (4.8)

A smooth approximation of H(φ) (and δ(φ)) must be used in practice [CV01b].
The scalars u+ and u− are updated in alternation with the level set evolution
to take the mean value of the input image f in the regions φ ≥ 0 and φ < 0,
respectively :

u+ =

∫

f(x, y)H(φ)dxdy
∫

H(φ)dxdy
u− =

∫

f(x, y)(1 − H(φ))dxdy
∫

(1 − H(φ))dxdy
(4.9)

The bi-level Chan-Vese functional (4.6), provides the framework for modern prior-
based segmentation techniques, that use application-specific shape priors in ad-
dition to the generic principle of parsimony. The case of polygonal contours was
considered in [UYK04].

From generic priors to shape priors

In the presence of occlusion, shadows and low image contrast, generic prior knowl-
edge is insufficient by itself. Prior knowledge on the shape of interest is then nec-
essary [Ull96]. The recovered object boundary should then be compatible with
the expected contour, in addition to being constrained by length, smoothness and
fidelity to the observed image. To achieve this, the energetic formulation (4.6)
can be extended by adding a prior shape term [CSS03]:

E(φ, u+, u−) = ECV (φ, u+, u−) + µEshape(φ), µ ≥ 0. (4.10)

The main difficulty in the integration of prior information into the variational
segmentation process is the need to account for possible pose transformations
between the known contour of the given object instance and the boundary in
the image to be segmented. Many algorithms [CTT+01, CKS02, CKS01, LGF00,
TYW+01, LFGW00, RP51] use a comprehensive training set to account for small
deformations. These methods employ various statistical approaches to character-
ize the probability distribution of the shapes. They then measure the similarity
between the evolving object boundary (or level set function) and representatives
of the training data. The performance of these methods depends on the size and
coverage of the training set.

Selected recent contributions of MUSCLE partners

The incorporation of prior knowledge in image segmentation using the variational
framework is a hot research topic. Here a examples of recent contributions of
MUSCLE partners in this field.
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• INRIA-ARIANA : M. Rochery, I. H. Jermyn and J. Zerubia have recently
developed high order active contours, and applied them to the detection of
line networks in satellite imagery [RJZ03].

• TAU-VISUAL : T. Riklin-Raviv, N. Kiryati and N. Sochen brought to-
gether concepts from variational segmentation and vision geometry. Their
method is deterministic, and accounts for significant projective transforma-
tions between a single prior image and the image to be segmented [RRKS04].
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Chapter 5

Image Sequence Features

Motion is seamlessly perceived by human beings when directly observing a day-
life scene, but also when watching films, videos or TV programs, or even various
domain-specific image sequences such as meteorological or heart ultrasound ones.
However, motion information is hidden in the image sequences supplied by im-
age sensors. It has to be recovered from the observations formed by the image
intensities in the successive frames of the sequence.

Assumptions (i.e., data models) must be formulated to relate the observed
image intensities with motion. When dealing with video, the commonly used data
model is the brightness constancy constraint which states that the intensity does
not change along the trajectory of the moving point in the image plane (at least,
to a short time extent). The motion constraint equation can then be expressed in
a differential form that relates the 2D velocity vector, the spatial image gradient
and the temporal intensity derivative at any point p in the image. Nevertheless,
this enables to locally retrieve one component of the velocity vector only, the
so-called normal flow, which corresponds to the aperture problem. Then, other
constraints (i.e., motion models) must be added. They are supposed to formalize
known, expected or learned properties of the motion field, and this implies to
somehow introduce spatial coherence or more generally contextual information.

Visual motion information can involve different kinds of mathematical vari-
ables. First, we can deal with continuous variables to represent the motion field :
velocity vectors w(p) with w(p) ∈ IR2, or parametric motion models with param-
eters θ ∈ IRd with d denoting the number of parameters. Let us note that the
latter can be equivalently represented by the model flow vectors {wθ(p)} with
wθ(p) ∈ IR2. Second, we can consider discrete values or symbolic labels to code
motion detection output : binary values {0, 1}, or motion segmentation output :
number n of the motion region or layer with n ∈ {1, ..., N}.

Spatial coherence can be formalized by conditional densities defined on local
neighborhoods as in Markov Random Field (MRF) models, or equivalently by
potentials on cliques as in Gibbs distributions. Another way is to first segment
each image into spatial regions according to a given criterion (grey level, colour,
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texture) and to analyse the motion information over these regions. Perceptual
grouping schemes can also be envisaged.

5.1 Local motion measurements

The brightness constancy assumption along the trajectory of a moving point p(t)
in the image plane, with p(t) = (x(t), y(t)), can be expressed as dI(x(t), y(t), t)/dt =
0, with I denoting the image intensity function. By applying the chain rule, we
get the well-known motion constraint equation [HS81, Nag87] :

r(p, t) = w(p, t).∇I(p, t) + It(p, t) = 0 , (5.1)

where ∇I denotes the spatial gradient of the intensity, with ∇I = (Ix, Iy), and
It its partial temporal derivative. The above equation can be straightforwardly
extended to the case where a parametric motion model is considered, and we can
write :

rθ(p, t) = wθ(p, t).∇I(p, t) + It(p, t) = 0 , (5.2)

where θ denotes the vector of motion model parameters. It can be easily
derived from equation (5.1) that the motion information which can be locally
recovered at a pixel p is contained in the normal flow given by :

ν(p, t) =
−It(p, t)

‖∇I(p, t)‖
. (5.3)

It can also be written in a vectorial form: ν(p, t) = −It(p,t)
‖∇I(p,t)‖ω∇I(p, t), where ω∇I

denotes the unit vector parallel to the intensity spatial gradient. However, it
should be clear that the orientation of the normal flow vector does not convey
any information on the motion direction, but implicitly on the object texture (for
inner points) or on the object shape (for points on the object border). Besides, the
normal flow can be computed at the right scale to enforce reliability as explained
in [FB03].

In case of a moving camera and assuming that the dominant image motion
is due to the camera motion and can be correctly described by a 2D parametric
motion model, we can exhibit the residual normal flow given by :

νres(p, t) =
−DFDθ̂(p, t)

‖∇I(p, t)‖
, (5.4)

where DFDθ̂(p, t) = I(p + wθ̂, t + 1) − I(p, t) is the displaced frame difference
corresponding to the compensation of the dominant motion described by the
estimated motion model parameters θ̂.

Since the computation of intensity derivatives is usually affected by noise
and can be unreliable in nearly uniform areas, it may be preferable to consider
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the local mean of the absolute magnitude of normal residual flows weighted by
the square of the norm of the spatial intensity gradient (as proposed in [IRP94,
OB97]) :

ν̄res(p, t) =

∑

q∈F(p) ‖∇I(q, t)‖.|DFDθ̂t
(q)|

max
(

η2,
∑

q∈F(p) ‖∇I(q, t)‖2
) , (5.5)

where F(p) is a local spatial window centered in pixel p (typically a 3 × 3 win-
dow), and η2 is a predetermined constant related to the noise level. An interesting
property of the local motion quantity ν̄res(p) is that the reliability of the conveyed
motion information can be locally evaluated. Given the lowest motion magnitude
δ to be detected, we can derive two bounds, lδ(p) and Lδ(p), verifying the follow-
ing properties [OB97]. If ν̄res(p) < lδ(p), the magnitude of the (unknown) true
velocity vector w(p) is necessarily lower than δ. Conversely, if ν̄res(p) > Lδ(p),
‖w(p)‖ is necessarily greater than δ. The two bounds lδ and Lδ can be directly
computed from the spatial derivatives of the intensity function within the window
F(p).

By defining the motion quantity ν̄res(p), we already advocate the interest
of considering spatial coherence to compute motion information. Here, it sim-
ply amounts to a weighted averaging over a small spatial support and it only
concerns the data model. In the same vein, more information can be locally
extracted by considering small spatio-temporal supports, either through spatio-
temporal (frequency-based) velocity-tuned filters as in [FJ90] or using 3D orien-
tation tensors [BGW91, NG98]. On the other hand, more benefit can be gained
by introducing contextual information through the motion models.

Figure 5.1 presents some results of estimated dominant image motion and
maps of residual normal flow magnitudes [PBY04].

5.2 Motion detection and segmentation

Previous approaches to motion detection can be split into two categories: meth-
ods based on motion segmentation and methods thresholding image differences.
A synopsis of methods from both categories is proposed in [MB96].

Motion segmentation methods require an accurate estimation of the 2D ap-
parent motion in the image. This is not trivial since computing motion estimation
on the various image supports arising from objects in the scene is definitely de-
manding. However, some specific problems cannot be solved without information
on the orientation of motion. For example, apparent motion estimation enables
to conclude that the motion of a static background and a static foreground, al-
though different in their 2D projection, are induced by the same camera motion
and should therefore not be detected as independently moving. This can be
done using parallax and rigidity constraints [IA99], [Nel91], [TP90], [TLS93] and
[CB71].
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Figure 5.1: Track-and-field video: Top row: three images at different time in-
stants of a track-and-field sport TV program involving respectively an upward-
tilt camera motion, a left panning one, and a zoom combined with a panning
motion. Middle row: the velocity vector fields corresponding to the estimated
dominant image motion (due to camera motion). Bottom row: maps of residual
normal flow magnitudes (zero-value in black) [Piriou04].

Thresholding methods are applied to temporal image differences. The tem-
poral image differences of static regions and those of moving objects can be
statistically modeled. Within the class of thresholding methods, different kinds
of image structures can be considered. They may range from decision on single
pixels to spatial regularization using MRFs or active contours. The highest level
of structure is representing moving objects by their spatio-temporal envelopes. A
different form of structure is to consider only edges and to detect those that are
moving.

A review of basic methods is given in [Kon00]. Likelihood tests for motion
detection were early introduced in [HNR84]. More complex methods are pro-
posed in [Ros02] for modeling the spatial distribution of either noise or signal
and selecting an appropriate threshold. Markov Random Fields are a natural
extension in order to introduce contextual information into the detection scheme
[AK95]. Previous to image differencing, camera-induced motion can also be esti-
mated and compensated. To this end, a 2D parametric motion model is used in
[OB97] along with hierarchical MRFs. In [DKA04] wavelet analysis and robust
techniques are introduced to estimate dominant motion and hierarchical MRFs
are again exploited.
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A higher level of spatial structure can be reached using active contour and
the level set theory. For instance the approach described in [PD00] applies active
contours for detection and tracking of moving objects. It relies on the gray level
intensities for providing object boundaries. Two methods using level sets imple-
mentation are introduced in [MK03]: one purely based on motion and another
enforcing correspondence between motion boundaries and intensity boundaries.
Besides, they can distinguish between different moving objects.

Bayesian approaches like MRF and variational methods both rely on energy
minimization techniques. In the Bayesian framework, the aim is to maximize the
posterior probability of a model given the observations. Variational techniques
minimize an energy functional yielding a contour evolving according to some
constraints. The formulation of energies for both approaches is similar. It consists
of a regularization term and a term to fit observations. However, it is not possible
to assess the validity of the extremum. In other words, it is not possible to
interpret the value of the extremum. Thus, the best state is reached given the
model and the observations, but the quality of this state cannot be assessed.

Temporal integration improves quality and stability of the detection. Accu-
mulating motion information over time makes moving objects more salient with
regard to noise. This enables to detect small slowly moving objects. Direction-
ally consistent flow is accumulated over time in [Wix00]. A graph to represent
moving objects is exploited in [CM99], and object trajectories are optimal paths
in this graph. Spatio-temporal image intensity gradients to create mosaics of the
background are used in [PBA00]. Residual motion is then propagated and ac-
cumulated without optical flow computation. A threshold allows one to balance
between false alarms and minimal detectable motion. It is not clear how to set
this threshold, unless empirically.

As mentioned above, motion information accumulates on edges. The work
in [SDC04] concentrates on these highly contrasted features to detect multiple
layered motions. In [JKM04] contour fragments are matched. The different
transformations issued from those matchings are clustered into background and
moving objects. This work is closer to shape matching issues than to motion
detection. Both methods rely on a Canny-type edge detector.

Some work has also been devoted to distinguish between motion and changes.
Changes are variations of image intensities which do not correspond to a real
moving object : shadows and reflections but also aliasing [BFY00].

The use of perceptual criteria for change detection appears in [LM03] and
[SMK02]. In [LM03] an a contrario framework is applied to detect changes in
satellite images of urban landscapes. The considered local change information is
the image gradient orientation. In [SMK02], the use of perceptual organization
is considered to build the spatio-temporal envelopes of moving objects. The ap-
proach is essentially applied to human undergoing fronto-parallel motion in front
of a static camera. The envelopes localize the motion information but do not
provide shape information. In [VCB04], camera-induced motion is first compen-
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sated using 2D parametric motion models. The perceptual grouping principle
allows the computation of automatic detection thresholds. Detection operates on
three frames only. Boundaries of moving objects are retrieved through an image
segmentation based on meaningful intensity level lines. Moreover, a confidence
level for each detected region is derived through the so-called number of false
alarms evaluated according to the a contrario model. The lower this number, the
more reliable the detected event.
Figures 5.2, 5.3, 5.4 and 5.5 illustrate the approach with examples of objects
detection on different sequences.

Let us now consider motion segmentation meant as the competitive partition-
ing of the image into motion-based homogeneous regions. One important step
ahead in solving the motion segmentation problem was to formulate the motion
segmentation problem as a statistical contextual labeling problem or in other
words as a discrete Bayesian inference problem. Segmenting the moving objects
is then equivalent to assigning the proper (symbolic) label (i.e., the region num-
ber) to each pixel in the image, while estimating 2D parametric (usually affine)
motion models over the region supports (which is obviously a chicken-and-egg
problem). The advantages of this class of methods are mainly two-fold. Deter-
mining the support of each region is then implicit and easy to handle: it merely
results from extracting the connected components of pixels with the same label.
Introducing spatial coherence can be straightforwardly (and locally) expressed by
exploiting MRF models. This formulation can also encompass the determination
of motion layers by assuming that the regions of same label are not necessarily
connected [SA96].

Specifying (simple) MRF models at a pixel level (i.e., sites are pixels and
a 4- or 8-neighbour system is considered) is efficient, but remains limited to
express more sophisticated properties on region geometry (e.g., more global shape
information [CKS02]) or to handle extended spatial interaction. Multigrid MRF
models [HPB94] (as used in [OB97, OB98]) is a means to address somewhat
the second concern (and also to speed up the minimization process while usually
supplying better results). An alternative is to first segment the image into spatial
regions (based on grey level, colour or texture) and to specify a MRF model on
the resulting graph of adjacent regions as done in [GB00]. The motion region
labels are then assigned to the nodes of the graph (which are the sites considered
in that case). This enables to exploit more elaborated and less local a priori
information on the geometry of the regions and their motion. However, the spatial
segmentation stage is often time consuming, and getting an effective improvement
on the final motion segmentation accuracy remains questionable. Using the level-
set framework is another way to precisely locate region boundaries while dealing
with topology changes [PD00], but handling a competitive motion partioning of
the image (with the number of regions a priori unknown) remains an open issue
in that context even if recent attempts have been reported [CS03, MK03].

Let us also mention other recent work on Bayesian motion segmentation,
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exploring the use of edge motion [SDC04], offering extension to spatio-temporal
models [CS03], or introducing (two-step) hidden Markov measure field (HMMF)
models [MSB03]. Tensor voting could also be considered as an implicit way to
enforce spatial coherence [NM03].

5.3 Optical flow computation

By definition, the velocity field formed by continuous vector variables is a com-
plete representation of the motion information. Computing optical flow based on
the data model of equation (5.1) requires to add a motion model enforcing the ex-
pected spatial properties of the motion field, that is, to resort to a regularization
method. Such properties of spatial coherence (more specifically, piecewise conti-
nuity of the motion field) can be expressed on local spatial neighborhoods. First
methods to estimate discontinuous optical flow fields were based on MRF models
associated with Bayesian inference [HB93, MB96, SK99] (i.e., minimization of
a discretized energy function). Then, continuous-domain models were designed
based on PDE formalism [AWS00, CH99, KDA99, WBPB03]. Spatial coherence
can also be explicitly formulated by first segmenting the image in spatial regions
forming the delimited domains where motion models, either dense or parametric
ones, can be defined and estimated [BJ96, GB00].

A general formulation of the global (discretized) energy function to be mini-
mized to estimate the velocity field w can be given by :

E(w, ζ) =
∑

p∈S

ρ1[r(p)] +
∑

p∼q

ρ2[‖w(p) − w(q)‖, ζ(p′p∼q)] +
∑

A∈χ

ρ3(ζA) , (5.6)

where S designates the set of pixel sites, r(p) is defined in (5.1), S ′ = {p′} the
set of discontinuity sites located midway between the pixel sites and χ is the
set of cliques associated with the neighborhood system chosen on S ′. In [HB93],
quadratic functions were used and the motion discontinuities were handled by
introducing a binary line process ζ. Then, robust estimators were popularized
[BA96, MP98] leading to the introduction of so-called auxiliary variables ζ now
taking their values in [0, 1]. Depending on the followed approach, the third term
of the energy E(w, ζ) can be optional. Multigrid MRF are moreover involved in
the scheme developed in [MP98]. Besides, multiresolution incremental schemes
are required to compute optical flow in case of large displacements. Dense optical
flow and parametric motion models can also be jointly considered and estimated,
which enables to supply a segmented velocity field as designed in [MP02].

Recent advances have dealt with the computation of fluid motion fields involv-
ing the definition of a new data model (derived from the continuity equation of
the fluid mechanics) and of a motion model preserving the underlying physics of
the visualized fluid flows (2nd order div-curl constraint) as defined in [CMP02]. A
comprehensive investigation of physics-based data models is described in [HF01].
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(a) Original images (b) Boundaries of detected moving regions (in white)

Figure 5.2: Table tennis sequence. Original images in the left column. The boundaries
of the detected moving regions appear in white in the right column. Both the player
and the ball are accurately detected in the four images. In the first part of this video
(two upper rows of Fig. 5.2), the camera is almost static and only the forearm of the
player appears. The ball, the arm and the racket are correctly detected. The detected
moving regions closely fit the contours of the moving object. The regions detected on
the ball are associated with NFAs of 10−20. Let us recall that the lower the NFA, the
higher the confidence in the detection. NFAs on the arm are even much lower, about
10−150. This reflects that the motion of the arm is perceptually much more meaningful.
In the second part of the video (two lower rows of Fig. 5.2), the camera is zooming
out. The global dominant motion estimation performs well , although the assumption
of a planar background is violated by the table. Both the ball and the body of the
player are accurately detected. The NFA on the ball is about 10−1 in the bottom left
image. This means that the residual motion observations on the ball hardly distinguish
from noise. Indeed, the velocity of the ball reaches a minimum before being hit by the
racket. On top of that, the size of the ball is only about thirty pixels. It is hardly
possible to gather enough motion evidence on such a small region. In the bottom right
image, the velocity of the ball increased dramatically. This is reflected by an increase
of the confidence in the detection and the NFA of the region corresponding to the ball
decreases to 10−15. The velocity of the player varies inversely to that of the ball. It
is maximal just before hitting the ball. The NFA is about 10−80 on the player in the
lower left image. The velocity of the player decreases afterward and the associated
NFA raises to 10−30 in the bottom right image.



5.3. OPTICAL FLOW COMPUTATION 97

Figure 5.3: Four consecutive images of the road sequence. Original images in the left
column. Outline of detected regions in white in the right column. NFAs are about
10−10 on the white car on the left of the scene. Two regions are detected on the darker
car on the right. The upper region corresponding to the more contrasted part has an
NFA about 10−70 in the four images. The lower region has an NFA of 10−15. The
higher NFA (lower confidence) is explained by the saturated gray levels on the lower
region.
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Figure 5.4: Road sequence. Maps of residual motion for the four successive
images displayed in Fig. 5.3. On the lower part of the right car, the low contrast
prevents from extracting motion measures. The a contrario approach consists
in contradicting the fact that the value of residual motion are independently
distributed. The number of false alarms (NFA) of a region, is related to the
probability to observe by chance values of residual motion that are as high as the
ones which are actually observed.



5.3. OPTICAL FLOW COMPUTATION 99

Figure 5.5: Four images of the street sequence. Original images on the left.
Detected regions are outlined in white on the right. NFAs are about 10−80 on
the pedestrian closer to the camera and about 10−18 for the pedestrian in the
background
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5.4 Motion recognition

Exploiting the tremendous amount of multimedia data, and specifically video
data, requires to develop methods able to extract information at a higher level
(more semantic) level. Video summarization, video retrieval or video surveillance
are examples of applications. Inferring concepts from low-level video features is
a highly challenging problem. The characteristics of a semantic event have to be
expressed in terms of video primitives (color, texture, motion, shape ...) suffi-
ciently discriminant w.r.t. content. This remains an open problem at the source
of active research activities.
In [VL00], statistical models for components of the video structure are intro-
duced to classify video sequences into different genres. The analysis of image
motion is widely exploited for the segmentation of videos into meaningful units
or for event recognition. Efficient motion characterization can be derived from
the optical flow, as in [RA00] for human action change detection. In [ZMI01], the
authors use very simple local spatio-temporal measurements, i.e., histograms of
the spatial and temporal intensity gradients, to cluster temporal dynamic events.
In [YB98], a principal component representation of activity parameters (such as
translation, rotation ...) learnt from a set of examples is introduced. The consid-
ered application was the recognition of particular human motions, assuming an
initial segmentation of the body.
In [DRP02], video abstraction relies on a measure of fidelity of a set of key-frames
and a measure of summarizability derived from MPEG-7 descriptors. In [NPZ02],
spatio-temporal slices extracted in the volume formed by the image sequence are
exploited for clustering and retrieving tasks. Sport videos are receiving specific
attention due to the economical importance of sport TV programs and to future
services to be designed in that context. Different approaches have been recently
investigated to detect highlights in sports videos [ETM03].
In [PBY04], a statistical approach is proposed involving modeling, (supervised)
learning and classification issues, to deal with concepts related to events in videos,
more precisely, to dynamic content. Focus is put on motion information. Since
no analytical motion models are available to account for the variety of dynamic
contents to be found in videos, motion models have to be specified and learned
from the image data. To this end, new mixed-state probabilistic motion models
are introduced. Furthermore, such a probabilistic modelling allows the derivation
of a parsimonious motion representation while coping with errors in the motion
measurements and with variability in a given kind of motion content. Scene
motion (i.e., the residual image motion) and camera motion (i.e., the dominant
image motion) are handled in a distinct way. Indeed, these two sources of mo-
tion bring important, different but complementary, information which have to be
explicitly taken into account for event detection. As for motion measurements,
on one hand, 2D parametric motion models are considered to capture the camera
motion, and on the other hand, low-level local motion features to account for the
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scene motion. They convey more information than those used in [ZMI01], while
still easily computable contrary to optic flow.

5.5 Video shot detection algorithms

During the last years several papers describing the state of the art in video shot
detection have been published, like [BR96], [DAE95] or [KC01]. We would like
to provide an extended review of current techniques describing the most rele-
vant approaches in view of our applications in the context of video analysis for
information retrieval. A well-accepted classification of shot boundary detection
algorithms is based on the format of the input sequence : uncompressed (raw)
images, or an MPEG bit-stream. Under these main categories, we group the
different techniques in the state of the art, as represented in the figure below.

5.5.1 Segmentation in the compressed domain

Most of existing algorithms work in the uncompressed domain. They use as input
data a sequence of frames, being the color of the pixels the only information
directly available. Commonly, transitions are detected by means of a threshold
over a similarity measure. According to the metric used to compute the distance
between frames and the technique used in the segmentation process, current
algorithms can be classified into five sub-groups [KC01].

Pixel comparison :
This type of transition detection algorithms, also known as template matching,
relies on the computation of pixel-wise difference between consecutive frames.
One of the earliest methods was implemented by Kikukawa and Kawafuchi in
[KK92]. They compute the difference between images as the absolute sum of
pixel differences. For gray-level images, the frame difference curve FD(t) is the
absolute sum of pixel differences between frames at t and t + 1. By extension,
for color images, the frame difference curve is computed as the mean of the FD
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in each color component. The proposed algorithm detects a transition when the
value of the frame difference exceeds a certain threshold. The main drawback
of this approach is that the system is not able to distinguish between a small
change of the whole image and a large change in a small portion of the image
(due to object motion, for example) resulting in a high rate of false positives.
An improvement for this technique is presented by Zhang et al. [ZKS93]. In
[HJT94], Hampapur et al. compute what they call chromatic images by dividing
the change in gray level of corresponding pixels from two consecutive images by
the value of that pixel in the last image. Then, fades should correspond to uni-
form chromatic images. But this approach is also very sensitive to camera and
object motion.

Campisi et al. [CNS02] present a classic but robust method. A difference
image sequence is computed from the video. Then each difference image is seg-
mented into blocks. The similarity between consecutive collocated blocks is com-
puted and the sum of the similarities for the whole image, and within a temporal
window, is compared with a dynamic threshold to detect a fade or a dissolve.

An approach based on the variance of pixel intensities was proposed by Alattar
[Ala97]. Fades were detected first by recording all negative spikes in the time
series of the second order difference of the pixel intensity variance, and then by
ensuring that the first order difference of the mean of the video sequence was
relatively constant next to the negative spike. A combination of both approaches
is described in Truong et al. [TDV00]. These methods have a relatively high false
detection rate.

One algorithm for cuts and one for fades and dissolves have been developed
by Huang and Liao [HL01]. The first one checks if the value of the DC image
difference has a local maximum (within a window) at the current frame transition.
Then the ratio of this maximum to the next highest maximum in the window is
compared with two thresholds. If it is higher than the highest threshold, a cut is
detected. If it is between the two thresholds, a heuristic algorithm that considers
the histogram difference and the static or dynamic nature of the appearing and
disappearing shots (based on edge differences) is used. In the algorithm for
gradual transitions, the image difference from a specific frame is differentiated,
its zero-crossings are computed and then low-pass filtered. Then the transition
is the interval where there are few resultant zero-crossings, meaning that the
difference is monotonically increasing.

Lienhart [Lie99] proposed first to locate all monochromatic frames in the video
as potential start/end points of fades. Monochromatic frames were identified as
frames with standard deviation of pixel intensities close to zero. Fades were
then detected by starting to search in both directions for a linear increase in
the standard deviation of pixel intensity/color.An average hit rate of 87% was
reported at false alarm rate of 30%.

Block-based pixel comparison :
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The previous techniques are based on global image characteristics, which makes
them very sensitive to camera and object motion. In order to increase the ro-
bustness, block-based approaches use local characteristics of the image. Under
this approach the frame difference is computed comparing the B blocks in which
the image is divided. Following this strategy, different techniques can be derived
depending on the computation of the difference between blocks. Kasturi and Jain
[KJ91] compute the similarity between blocks using a likelihood ratio based on
the mean and the variance of the luminance values in each block. Blocks are then
counted as changed if and only if the likelihood ratio exceeds a certain threshold.
When the percentage of changed blocks is above a second threshold, a cut is
declared. This method is more robust in front of slow camera and object motion,
but it still presents a high ratio of false positives. Moreover, because statistical
values must be computed, its computational burden is higher than for template
matching approaches. In order to improve the robustness in front of motion,
Shahraray [Sha95] proposes a method where several matches are considered for
each block. A new algorithm called net comparison is presented by Xiong et al.
in [XLI95]. As previous techniques, it declares a cut according to the percentage
of changed blocks between consecutive frames, but in order to increase the pro-
cessing speed only a part of the image is analyzed. As an extension, in [XL98] the
same authors propose to sub-sample in both time and space. The last technique
we present based on block differences was developed by Demarty [9]. In the first
step, her approach computes the difference between consecutive frames (based
on pixel value differences) and applies a block-based criterion to determine the
amount of change in each block, creating what the author calls the transition
mask. Then, a global criterion is applied on the transition mask in order to de-
termine the amount of change between consecutive frames. By applying the same
procedure all over the sequence, a monodimensional curve is created. This curve
is filtered using morphological operators (a modified version of the top hat) so
that transitions can be detected by imposing a threshold. While this approach
has proven to be robust for the detection of scene cuts, it is less capable to de-
tect gradual transitions because of the thresholding of the last step. Moreover,
according to the author, it is sensible to abrupt changes on the images, causing
that flashes or rapid motion yield false alarms.

Histogram comparison :
The main idea behind the use of the histogram is to further reduce the sensibility
to the camera motion. Since histograms represent a distribution of colors, they are
robust in front of rotations or changes in the viewing angle [Swa93]. Although in
theory it is possible that completely different images present identical histograms,
this is a very unlikely situation in real scenarios. As we have seen in the case of
pixel comparisons, histogram-based approaches can also operate over the whole
image (global histogram) or by regions (local histograms).

Global histogram comparison :
First techniques based on histogram comparisons [NT92], [Ton91], [ZKS93], [YYWL95]
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used the same approaches we have previously described for pixel-based algo-
rithms. However, instead of using a distance based on pixel values, they define a
new metric based on histogram comparisons. The histogram difference between
two gray-level images at t and t + 1 can be formulated as :

HD(t) =
1

M

∑

m = 0M−1‖ht+1(m) − ht(m)‖ (5.7)

where M is the total number of bins of the histogram. On that basis, a cut
is declared when the value of the histogram difference HD(t) exceeds a certain
threshold. In spite of its simplicity, such approaches provided promising results.
In order to improve the performance of these algorithms, Ueda et al. [UMY91]
and Zhang et al. [ZKS93] take into account color information by means of color
histograms. An important factor to take into account when histograms are com-
pared is the color space used to represent colors. Both Smith [Smi97] and Gargi
et al. [GOK+95] analyze among others, the following color spaces : RGB, HSV,
YUV. Up to now, the histogram-based methods are only suited to detect abrupt
transitions (cuts) by using a single threshold. The algorithm proposed in [ZKS93]
by Zhang et al. implements a technique called twin comparison. This algorithm
also relies on the difference between color histograms but it uses two thresholds :
one to detect cuts, and another to detect gradual transitions. Tests conducted
by Borezcky [BR96] show that this approach significantly reduces the number of
false positives. However, it slightly reduces the number of detected transitions,
too.

Local histogram comparison :
The use of local histograms (computed over a portion of the image) intends to
recover part of the spatial information lost from the pixel domain. The idea is
to take profit of the robustness of the histograms in front of movement while
introducing some spatial information to improve the performance. A block-based
approach is presented by Nagasaka and Tanaka in [NT92]. Images are split into 16
non-overlapping blocks. A color histogram is computed for each block and com-
pared to that of the corresponding block. The largest differences are discarded to
be more tolerant to object and camera motion. Then, as we have seen in the case
of pixel-based block comparisons, a two-threshold approach is used to detect the
transitions. The first threshold is used to decide if a block is counted as changed
between consecutive frames. The second threshold specifies the minimum number
of changed blocks to declare a transition. This technique reduces the number of
missed transitions compared to global histogram approaches at the expense of a
higher rate of false alarms. Another technique based on local histograms, named
selective HSV histograms, is presented by Lee and Ip in [LI94].

Clustering-based temporal video segmentation :
Thus far, the algorithms we have reviewed rely on the thresholding of a simi-
larity measure between consecutive frames. In the following, we discuss some
techniques based on different approaches. In [GFT98], Gnsel et al. present an



5.5. VIDEO SHOT DETECTION ALGORITHMS 105

unsupervised clustering technique based on the K-Means algorithm. According to
this technique, the segmentation is viewed as a 2-class clustering problem, where
each transition between consecutive frames must be classified as shot change or
no shot change using the K-Means algorithm. Observe that although frame tran-
sitions are labelled individually, gradual shot changes can be naturally detected :
when several successive frame transitions are marked as shot change, the whole
set corresponds to a gradual change. The information used to measure similarities
is based on color histograms both in the YUV and RGB color spaces. Observe
that this technique does not classify the different types of gradual transitions.
However it overcomes one of the main drawbacks of previous techniques : the
dependence of the threshold on the type of sequence. The main advantage of the
clustering-based segmentation is that it allows multiple features to be simultane-
ously used. In [FT98], histogram and pixel-based features are jointly used.
The method of Qi et al. [QHL03] uses two binary classifiers trained with manually
labelled data : one for separating cut form non-cut frames and one for separat-
ing abrupt from gradual cuts. These are either k-nearest-neighbor classifiers,
naive bayesian networks or support vector machines. The gradual/abrupt clas-
sifier input is preprocessed with wavelet smoothing. Classifier input is a vector
composed of whole-frame and blockwise histogram differences from 30 neighbor
frames, camera motion estimations derived from MPEG2 features and blackness
of the frame. The value of the work lies in the comparison of the different types
of classifiers for the task, and the fact that the experimental results are on the
standard TRECVID 2001 data. The optimal F-score of 0.94 for cuts and 0.70 for
gradual transitions is obtained from the k-nearest-neighbor classifiers.

A novel idea was developed by Lienhart [Lie01] where dissolves (and only dis-
solves) are detected by a learning classifier (specifically a neural network). The
classifier detects possible dissolves at multiple temporal scales, and merges the
results using a winner-take all strategy. The interesting part is that the classi-
fier is trained using a dissolve synthesizer which creates artificial dissolves from
any available set of video sequences. Although the videos used for experimental
verification are non-standard, performance is shown to be superior to the simple
edge-based methods commonly used for dissolve detection.

Feature-based temporal video segmentation :
Another category of techniques, which are not based on the thresholding of a
frame similarity curve, bases the segmentation process on the analysis of the
evolution of a certain feature. In [BBB+98], [BG96], [GB98], Bouthemy et al.
present several algorithms based on motion analysis (global or local). According
to their reasoning, in a real video sequence the camera and object motion are
continuous in the shots. However, each transition represents a discontinuity in
such motion. This approach declares a transition each time there is a change in
the motion model. While it is quite robust in front of movement, it is only able to
detect abrupt transitions. Relaying on the same principle of motion continuity,
in [ZMM99], [ZMM95] Zabih et al. present a technique based on the analysis of
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contour pixels. A cut is declared when most of the edges change; a progressive
change of the edges should correspond to gradual transitions.

Heng and Ngan [HN01] present an advanced edge-based approach. They
extract the edges from the video and refine them. Then they match them across
frames using a complex technique which includes, among other things, exhaustive
matching, various constraints, motion estimating through clustering, dilation of
edges, and edge joint tracking. Matched edges transfer their identity to edges
of the next frame, and thus it is possible to determine the backward lifetime
(age) of each edge. Each frame’s majority object lifetime is the near-maximum
lifetime of edges in the frame. If it is below a threshold, a gradual transition is
detected. If it is near zero, a cut is detected. In addition, in order to detect the
type of gradual transition the frame is segmented into blocks and the forward
and backward lifetimes of the edges in each block are checked to determine if
they belong to the appearing or disappearing shot.

Li et al. citeLi2002 define the Joint Probability Image of two frames as a
matrix where the element [i, j] contains the probability that a pixel with color
i in the first image has color j in the second image. They also derive the Joint
Probability Projection Vector (JPPV) and the Joint Probability Projection Cen-
troid (JPPC) as 1-dimensional and scalar statistics of the JPI. Specific types of
transition (dissolve, fade, dither) are observed to have specific patterns of JPI.
To detect shot changes, possible locations are first detected by using the JPPC,
and they are then refined and validated by matching the JPPV with patterns of
specific transitions.

Zhao and Grosky [ZG03] split each frame into blocks and compute the average
hue and saturation for each. For every hue and saturation value, the angles of
the Delaunay triangulation of the blocks that have this value is found and the
angles of the triangulation are histogrammed. The feature vector for each frame
is 10 hue values × 36 angle bins + 10 saturation values × 36 angle bins = 720
values. This is compared to the standard HS histogram method with 10 (H)
× 10 (S) = 100 bins. Optionally, latent semantic indexing is applied. This is
essentially a SVD dimensionality reduction of the frame vectors which is followed
by normalization and frequency based weighting. A shot change is detected if
the magnitude of the difference of the feature vectors (histogram, anglogram, or
LSI of either) is above a threshold T2. If it is between two thresholds T1 and T2

it is verified semi-automatically. The biggest drawback of the work, however, is
the necessity of user interaction for the detection of gradual transitions.

The algorithm of Zhang et al. [ZCS03], called PixSO, begins by calculating
the classic sum of pixel differences. If this above a threshold, a cut is detected. If
it is between a high and a low threshold, each frame is segmented into two classes
(foreground and background) by an unsupervised segmentation algorithm and
the change between these classes is computed. If it is above a threshold, objects
are defined as connected components of foreground. The object correspondence
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between frames is computed based on distance of centroids. If overlap between
corresponding objects is above a threshold, a cut is detected. The authors claim
0.96 recall and 0.92 precision.

Model-driven temporal video segmentation :
All the techniques we have surveyed so far extract some kind of data from the
video sequence and then analyze it in order to detect some pattern which cor-
responds to shot transitions. These techniques are known as data-driven. Al-
ternatively, model-driven approaches tackle the problem of video segmentation
from a different point of view. They characterize the different types of transition
by means of mathematical models. Hampapur et al. [HJW95] create models
for different types of transition. Their method takes into account the editing
process of video sequences to characterize the transitions. For instance, dissolves
are modeled as the weighted average of frames from the shots before and after
the transition. The segmentation algorithm tries to locate those frames of the
sequence that fit the model to declare a transition. As other previously discussed
techniques, it is quite sensitive to motion. In [AJ94] Aigrain and Joly introduce
what they call differential model of motion picture. Instead of modeling the value
of image pixels across transitions, they define a model to characterize the differ-
ence between them. The technique presented by Yu et al. [YBH97] is a mixture
between data- and model-driven approaches. At the first step, an histogram-
based algorithm is applied to detect cuts. Then, fades and dissolves are detected
by inspection of the frames in-between. Their model is based on the evolution
of the number of edge pixels across gradual transitions. A different technique
is discussed in [BW98], where Boreczky and Wilcox use hidden Markov models
(HMM) to detect shot transitions. They generate a three component vector for
each pair of consecutive frames, based on color (gray-level histogram difference),
motion (estimate of object motion) and audio information. They use the sequence
of vectors to feed a six state HMM (shot, cut, fade, dissolve, pan and zoom). The
main advantage of this algorithm is that thanks to the training phase (inherent
to any HMM) there is no need for thresholds.

Shot detection is performed by Janvier et al. [JBMMP03] in three indepen-
dent steps. First the appearance of a cut is detected by estimating the probability
that a boundary exists between two frames. The various probability functions are
derived experimentally and their parameters are computed from training data and
the derived “shots” are further segmented into pieces that exhibit greater con-
tinuity using a linear model and dynamic programming with minimum message
length criterion to fit this model. In order to give acceptable results in the task
of shot detection, these segments are then merged using a 2-class K-means. This
operates on color histograms and mutual information [CNP02] of frames within
a window around the segment change and classifies them into “shot change” and
“no shot change” categories.

A thorough analysis of the shot detection problem is presented by Hanjalic
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[Han02], and a probabilistically based algorithm is described. A discontinuity
value between frames is defined as the average difference between average YUV
components of matching blocks within these frames. For detecting abrupt transi-
tions adjacent frames are compared, while for gradual ones frames that are apart
by the minimum shot length are compared. The a priori likelihood functions of
the discontinuity values are obtained by experiments on manually labelled data.
Their choice is largely heuristic. The a priori probability of shot detection condi-
tional on time from last shot detection is modelled as a Poisson function, which
was observed to offer good results. The shot detection probability is refined
with a heuristic derived from the pattern of the discontinuity values (for cuts
and fades) and in-frame variances (for dissolves) in a window around the current
frame. Effectively a different detector is implemented for each transition type.

Sánchez and Binefa [SB03] model each shot as a Coupled Markov Chain
(CMC), which encodes the probabilities of temporal change of a set of features.
Here, hue and motion of a 16x16 image block are used. For each frame, two
CMCs are computed, one from the shot up to and including that frame, and one
from that frame and the next one. Then the Kullback-Leibler divergence between
the two distributions is compared with a threshold adaptively (but heuristically)
computed from the mean and standard deviation of the changes encoded in the
first CMC. The fact that the dynamics of the disappearing shot are inherently
taken into consideration for detecting shot changes is what gives this method its
strength and elegance.

Subspace-based video segmentation :
A feature-independent method is presented by Liu and Chen [LC02]. They use
a modified PCA algorithm on each shot to extract its principal eigenspace. For
this, two novel algorithms are presented to facilitate the gradual computation of
the eigenspace, and also to place greater weight on the most recent frames (by
heuristic weights). A cut is detected when the difference between a frame and its
projection into the eigenspace is above a static threshold.

In order to make the feature space more discriminant, Cernekova et al. [CKP03]
propose performing SVD is on the color histograms of each frame to produce re-
duced dimension feature vectors. Shot change is detected by comparing the angle
between the feature vector of each frame and the average of the feature vectors of
the current shot. Shots whose feature vectors exhibit high sparseness are consid-
ered to depict a gradual transition between two shots. The main problem with
this approach is the static threshold which is applied on the angle between vectors
to detect shot change, which may be problematic in the case of large variation in
intra-frame content and small variations in inter-frame content.

5.5.2 Segmentation in the MPEG compressed domain

Due to the increasing amount of material stored in MPEG format, performing
temporal segmentation in the compressed domain presents several advantages.
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By avoiding to decode the analyzed sequence, the processing speed is increased
and the storage requirements are greatly reduced. Moreover, operations should be
faster because the lower gross data rate of compressed video. Another important
advantage is that MPEG bit-streams contain several features that are not present
in the raw sequence, such as motion vectors or average gray intensities. In the
following sections, we review some of these techniques grouped by the type of
information they use: DCT coefficients, DC terms or macro-block (MB) coding
type.

Temporal segmentation based on DCT coefficients :
The main goal of the first approaches working on the compressed domain was
speed. In [AHC93], Arman et al. introduce a cut detection algorithm based on
the comparison of the DCT coefficients of corresponding blocks from consecutive
I frames by means of a normalized inner product. In order to increase the pro-
cessing speed, only a subset of coefficients from a subset of blocks is taken into
account. The technique presented by Zhang et al. in [ZLGS94] is an adaptation of
the well-known techniques that apply on the pixel domain. Here, on compressed
video, the pixel-wise comparison is used to compute the difference between DCT
coefficients of corresponding blocks. Both of the above techniques only take into
account I frames because they are the only ones for which the DCT coefficients
are directly available. On the one hand, this allows a great processing speed. On
the other hand, however, it greatly reduces the performance of the algorithms.
The loss of temporal resolution makes them even more sensible to object and
camera motion, increasing the number of false positives compared to the tech-
niques working on the uncompressed domain. Besides, gradual transitions cannot
be detected.

Temporal segmentation based on DC terms :
A large set of techniques working on the compressed domain are based on the
processing of DC terms. These values correspond to the mean luminance of each
block of the coded image. The full set of DC terms constitutes a low resolution
version of the original image, called DC-image. These techniques use basically the
same approaches based on pixel [YL95] and histogram [PS97] differences we have
seen in the previous sections, applied over the DC-images. The main problem
here is how to efficiently extract these images from the input bit-stream. I frames
are easy to handle because DCT coefficients are directly available. However, DC
images for P and B frames are very costly to compute since motion vectors must
be taken into account. In [SD95], Shen and Delp propose a fast reconstruction of
color DC-images using an approximated approach. In [TD98], Taskiran and Delp
present an extension of the previous technique based on a generalized sequence
trace, which is the evolution of the difference between the feature vector of con-
secutive frames. In order to reduce the complexity of the DC-image creation,
Sethi and Patel [SP95] present an algorithm where only I frames are processed.
Ardizzone et al. [AGCM96] also propose an approach relying only on I frames.
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An advanced statistical approach is presented by Lelescu and Schonfeld [LS03].
This additionally benefits from operating on MPEG-compressed videos. They ex-
tract luminance and chrominance for each block in every I and P frame, and then
perform PCA on the resulting vectors. It should be noted that the eigenvectors
are computed based only on the M first frames of each shot. The resulting vectors
are modelled by a gaussian random distribution. Then the mean and covariance
matrix of the distribution are computed, also in the M first frames of each shot.
The originality of the approach is that a change statistic is computed for each
new frame by maximum likelihood methodology (the Generalized Likelihood Ra-
tio algorithm) and if it exceeds an experimentally determined threshold a new
shot is started. The estimation can be either additively or non-additively based.
The algorithm is tested on a number of videos originating from news, music clips,
sports and other types where gradual transitions are common. The best results
of 0.92 recall and 0.72 precision were recorded for the additively-based algorithm.

Temporal segmentation using MB coding mode and other features :
Another feature from the compressed domain used in several segmentation algo-
rithms is the coding mode of the macro-blocks (MB). For I images all the MB are
coded in intra mode, while for P and B images they may be coded either intra- or
inter-mode. For those portions of the sequence with small changes, most of the
blocks are coded in inter-mode because it is possible to find similar blocks in the
preceding frames. However, across a transition there is a lot of change and hence
the number of MB coded in intra-mode should be much higher. Notice that this
only applies for P and B frames. Different techniques make use of this infor-
mation, usually combined with other features, as for instance [MJC95], [ZLS95],
[KC98] or [FLH96]. The approaches described in Little et al. and Deardoff et
al. [KC98] use as input data a sequence encoded using the M-JPEG format and
searches for differences in the size of the encoded image to detect cuts. More
precisely, a cut is detected when there is a sudden change on the size of the
coded image. One of the main drawbacks of compressed domain techniques is
the dependence of the performance on the input bit-stream itself. First, it implies
a lack of generality of the algorithms because the information contained in the
bit-stream depends on the coding method. Second, even when the same stan-
dard is used, sequences encoded with different encoders may lead to significant
differences in performance [PS97]. Additionally, the performance achieved using
compressed domain techniques is lower than that achieved using uncompressed
domain approaches, especially for gradual transitions.
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Chapter 6

Content-based description of
Audio

6.1 Introduction

Scientific and technological progress nowadays facilitate the continuous accumu-
lation of data. This fact yields unprecedented opportunities for the transition of
our society to the prospect of a knowledge-driven society. Semantic manipulation
of the deluge of information that is being accrued is a basic prerequisite towards
this direction. Diversity and multimodality of this information pose additional
challenges.

Within this framework, tackling automatic content analysis of audio data is
of major importance. Audio cues, either alone or integrated with information ex-
tracted from other modalities, may contribute significantly to the overall semantic
interpretation of data.

Event detection in audio streams is an aspect of the aforementioned analysis.
The concept of “event” corresponds to a noteworthy happening and is appli-
cation dependent. For example, applause, chanting, laughter or alterations in
the speech rate of the sport-caster may be regarded as events in a sports-video.
Speaker changes, changes between various speech quality levels, between speech
and silence, or speech and music are common events, e.g. in the case of broadcast
news.

Event detection in audio streams aims at delineating audio as a sequence of
homogeneous parts each one identified as a member of a predefined audio class.
Determination of such audio classes (e.g. speech, music, silence, laughter, noisy
speech etc. ) is the first step in the design of an event detection algorithm.
Obviously, these classes are inferred from the specificity of the application. The
selection and extraction of appropriate audio-features ensues and is probably the
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most significant phase. It is understood that the correct choice of these features
favors the successful completion of the following phases. Proper exploitation of
the extracted attributes leads to the segmentation of the audio stream and clas-
sification of the resulting parts. Classificiation can be done by discirmination of
the parts, e.g. into speech or music and subsequently into specific sub-classes of
a category, e.g. various forms of speech, musical instruments or musical genres.
Furthermore, the extracted attributes allow automatic organization of audio
based on its content.

In this report we will attempt to discuss the state of the art in all these aspect,
namely selection of audio features, segmentation, classification and organization.
Research in these areas has been quite intense and indicates that the problem is
an arduous one. Relevant overview articles have been written by Foote [18] and
Downie [9]. The remainder of this Chapter is structured as follows: Section 6.2
describes the range of features currently employed in audio analysis, focusing on
spectral, temporal, and specific high-level features. Section 6.3 describes current
work in a task that is fundamental to many subsequent tasks in audio analy-
sis, namely audio segmentation. this is followed by a description of the current
state in differents classification tasks, briefly listing the various classification ap-
proaches, followed by the two core audio classification tasks, namelymusical in-
struments and genre classification, in Section 6.4. This will be rounded off by a
short description of issues pertaining to user interfaces, i.e. how the approaches
covered in this report may be put to use to assis users in interacting with audio
collections, in Section 6.5, before summing up and pointing at core challenges in
Section 6.6

6.2 Audio Feature Selection

During the short life of research in the area of general audio segmentation various
types of features have been proposed. Various audio descriptive features are used
for classification purposes in sound and speech recognition applications and many
of them are also widely used in music analysis, although there exist also specially
designed features that try to account for specific characteristics of each audio
type, or that can discriminate among them. Another case of specially designed
features are the ones that discriminate between two classes of audio data, e.g.
common discrimination tasks include speech vs. music or speech vs. silence.

6.2.1 Spectral features

Spectral descriptors are most frequently used in general audio recognition ap-
plications, but many extracted features are also used in musical instrument and
genre classification applications [46] [47] [7] [31] [11] [51]. The most frequently
used are:
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• Mel frequency cepstrum coefficients: They are a widely used variation of
the cepstral coefficients that follow the Mel-frequency scale as proposed by
psychoacoustics and are the standarad features used in Automatic Speech
Recognition (ASR). They have been adopted in many approaches, most of
which afterwards use model-based (e.g. posterior probabilities) classifica-
tion methods [54, 32, 6, 14, 50] and/or are designated to be part of larger
ASR systems.

• Zero-Crossing Rate (ZCR): related to the mean frequency of a segment. It
provides a noise measure for the given signal [57], [37], [22], [36], [30]. A
variation is high zero-crossing rate ratio defined as the ratio of the number
of frames whose ZCR is above 1.5 times the average ZCR.

• short-time energy (STE): provides a convenient representation of the am-
plitude. A variation is low short-time energy ratio which is proportional
to the ratio of the number of frames whose STE is less than 0.5 time of
average STE.

• Silence crossing rate is the number of times that the energy falls below
some silence level criterion.

• Spectral Flux (Delta Spectrum): It is defined as the average variation value
of the spectrum between two adjacent frames.

• Spectral Rolloff : Measures the spectral shape and is defined as the fre-
quency below which a percentage of the magnitude distribution is concen-
trated.

• Spectral centroid : Sometimes it is referred to as ”Brightness” of the signal,
it provides a measure of spectral shape where higher values correspond to
brighter textures.

• Harmonicity : It measures the deviation of the signal spectrum from a har-
monic spectrum.

Even the root mean square amplitude along with the ZCR has been used as
feature in [37] resulting in quite high classification rates.

Other spectral features used by Eronen [11] are the mean and standard devia-
tion of the spectral centroid, the fundamental frequency along with its mean and
standard deviation, the normalized and maximum of the normalized spectral cen-
troid. In addition, the MPEG-7 Audio group has proposed a variety of spectral
descriptors, consisting of the following groups: basic spectral, signal parameters,
timbral spectral and spectral basis representations. MPEG-7 Harmonicity and
Fundamental Frequency features were used by Slezak [51] in musical instrument
classification experiments.
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Among the features that have been proposed recently especially for the spe-
cific problem of audio segmentation and classification, the following should be
mentioned: average probability dynamism, mean per frame entropy [52], [2], [6],
background-label energy ratio, phoneme distribution match [52], Teager energy
and related modulation features [13].

In more detail, the use of average probability dynamism as an audio-feature is
based on the observation that the posterior phoneme probability estimates (ac-
cording to an acoustic model) for speech segments change frequently whereas in
non-speech segments they change much less frequently and more gradually. Mean
per-frame entropy exhibits the suitability of an acoustic model for an audio seg-
ment. Background-label energy ratio compares the expected non-speech energy
of a segment to the expected speech energy. Phoneme distribution match shows
how close the phoneme probability distribution for a whole segment is to the cor-
responding distribution estimated from a training set of known speech segments.
Finally, Teager energy and related modulation features, namely instantaneous
amplitude and frequency, are based on the observation that speech resonance
signals may be modelled as amplitude and frequency modulated signals.

6.2.2 Temporal features

Temporal descriptors are widely used in instrument recognition applications,
mainly because the timbral characteristics that differentiate musical instruments
are not related with their spectral features. In their experiments featuring musical
instrument classification, Eronen [11] and Slezak [51] have used several temporal
features, which are outlined below:

• Length: Signal length.

• Rise time (Attack): Relative length of the attack (till reaching 75% of
maximal amplitude).

• Steady time: Relative length after the end of the attack (till the final fall
under 75% of maximal amplitude)

• Decay time: Decay time (the rest of the signal).

• Maximum: Moment of reaching maximal amplitude.

• Crest factor : Defined as max/rms of signal amplitude.

It should be noted that the audio description framework as defined in the MPEG-
7 Audio protocol [24] contains two groups of temporal descriptors: basic and
timbral temporal. The former contains two descriptors: instantaneous waveform
and power values, while the latter contains descriptors for log attack time and
temporal centroid.
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6.2.3 Specialized high-level features

There are few cases that the features selected might be characterized by unnec-
essary detail and they are not so general as they should be. As an example,
in [42], various over-detailed quantities are proposed as features, like cepstrum
resynthesis residual magnitude and spectral roll-off point.

Features that discriminate between speech and music should be mentioned
explicitly, since they have been the object of specialized research. Most sounds
generated by musical instruments as sources share the common characteristic
of being harmonic. This means that they contain superimposed a fundamen-
tal frequency tone plus its integer multiples. On the other hand, speech is a
mixed harmonic/non-harmonic sound with voice/unvoiced segments correspond-
ingly [57]. Although fundamental frequency estimation (referred as pitch) is a
research field on its own, various features try to detect harmonic related proper-
ties.

Features describing rhythmic content can become useful in musical genre clas-
sification experiments. In addition, the analysis of the rhythmic structure of mu-
sic by using tempo tracking algorithms can be used in music indexing and retrieval
applications. Usually, tempo detection algorithms consist of a filterbank decom-
position, an envelope extraction step and a periodicity detection algorithm. The
features calculated for describing rhythmic content are based on the wavelet trans-
form (WT), which provides high time resolution and low-frequency resolution for
high frequencies and low time and high-frequency resolution for low frequencies.
Moreover, the discrete wavelet transform (DWT) can provide a compact signal
representation in the temporal and spectral domain, that can be used efficiently
in a filterbank algorithm. More information on the tempo detection algorithm
and the extraction of the rhythmic features using a beat histogram can be found
in [47].

Up till now only few approaches in the area of content-based audio analysis
have utilized the framework of psychoacoustics. Psychoacoustics deals with the
relationship of physical sounds and the human brain’s interpretation of them,
cf. [59]. One of the first exceptions was [15], using psychoacoustic models to
describe the similarity of instrumental sounds. The SOMeJB system [40] uses
Rhythm Patterns as features, which describe time-invariant loudness modulation
amplitudes per modulation frequency (i.e. energy or rhythm variation) on several
frequency regions. The modulation amplitudes are calculated from a Sonogram,
i.e. a spectrogram representing the specific loudness sensation according to the
human psycho-acoustics. Specifically, the audio data is decomposed into fre-
quency bands, which are then grouped according to the Bark critical-band scale.
Then, loudness levels are calculated, referred to as phon using the equal-loudness
contour matrix, which is subsequently transformed into the specific loudness sen-
sation per critical band, referred to as sone. To obtain a time-invariant repre-
sentation, recurring patterns in the individual critical bands are extracted in the
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second stage of the feature extraction process. These are weighted according to
the fluctuation strength model, followed by the application of a final gradient
filter and gaussian smoothing.

Recent experiments confirmed the importance of psycho-acoustic models for
audio classification [28], also introducing two further high-level descriptors for
audio characteristics, namely statistical Spectrum Descriptors and Rhythm his-
tograms: The spectrum transformed into Bark scale in step represents rhythmic
characteristics within the specific frequency range of a critical band. According
to the occurence of beats or other rhythmic variation of energy on a specific band,
statistical measures are able to describe the audio content. The following statisti-
cal moments on the values of each of the 24 critical bands are calculated to form
statistical Spectrum Descriptors: mean, median, variance, skewness, kurtosis,
min- and max-value, resulting in 168 attributes.

Rhythm Histogram features are another descriptor for general rhythmics in an
audio document. Contrary to the Rhythm Patterns and the Statistical Spectrum
Descriptor, information is not stored per critical band. Rather, the magnitudes
of each modulation frequency bin of all 24 critical bands are summed up, to form
a histogram of “rhythmic energy” per modulation frequency. The histogram
contains 60 bins which reflect modulation frequency between 0 and 10 Hz. For a
given piece of audio, the Rhythm Histogram feature set is calculated by taking
the median of the histograms of every 6 second segment processed, resulting in a
60-dimensional feature space.

6.3 Segmentation

Audio segmentation is fundamental to subsequent tasks such as classification of
audio. Many different approaches have been proposed in the literature for the
segmentation of an audio stream into homogeneous parts.

In rule-based approaches, segmentation is based on rules applied to the set
of features that have been extracted from the stream. Energy is the most com-
mon feature used. Energy based approaches [48], [25], [22] have been widely
used and are particularly easy to implement. Silence periods in the input signal
are detected as low energy sections of the signal. It is assumed that segment
boundaries exist in theseRhythmic periods if a number of additional constraints
is satisfied such as minimum length of the silence period. Others hypothesize
segment boundaries when abrupt changes in the values of the features between
subsequent moving frames are detected [55], [57].

In metric-based approaches segment boundaries are placed at local maxima
or minima of a special distance calculated between neighboring sliding windows.
One metric is the Kullback-Leibler divergence that was first used by Siegler et
al [45] as an alternative to the Generalized Likelihood Ratio proposed in [20], in
the case of speaker segmentation. The Bayesian Information Criterion (BIC) was
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applied as a metric by Chen and Gopalakrishnan [8] and exhibits improved stabil-
ity and robustness at a high computational cost, however. Many have proposed
variations in the application of the BIC in order to optimize efficiency [58], [23].
The VQ distortion measure, on the other hand, proposed in [33], is an alternative
reported to have improved results.

In decoder-guided approaches the speech recognition system is used for seg-
mentation. The stream is first decoded and then the segments are cut between
long silence intervals [26], [53]. However, silence is not directly related to acous-
tic changes in the stream so usually a second stage segmentation follows usually
based on rules.

In many cases, segmentation is performed explicitly at pre-specified time in-
tervals. A post processing step, after classification, follows in order to concatenate
neighboring segments of the same class.

6.4 Classification

Equally important for event detection in audio streams is the classification of
the various audio segments in predetermined classes. Classification may take
place in subsequent stages. Definition of the classes depends on the application.
Several studies and overviews related to content-based audio signal clas-sification
are available, e.g. [29].

6.4.1 Classification approaches

Rule-based methods follow a hierarchical heuristic scheme to achieve classifica-
tion. Based on the properties of the various audio classes in the feature space,
simple rules are devised and form a decision tree aiming at the proper classifi-
cation of the audio segments [57], [22]. These methods usually lack robustness
because they are threshold dependent, but no training phase is necessary and
they can work in real-time.

In most of the model-based methods, segmentation and classification are per-
formed at the same time. Models such as Gaussian Mixture Models and Hidden
Markov Models are trained for each audio class and classification is achieved by
Maximum Likelihood or Maximum a Posteriori selection over a sliding window
[25], [5], [42], [39], [4], [1], [52]. These methods may yield quite good results but
they cannot easily generalize, they do not work in real-time, since they usually
involve a number of iterations, and data is needed for training.

Classical Pattern Analysis techniques cope with the classification issue as a
case of pattern recognition. So, various well known methods of this area are ap-
plied, such as neural networks and Nearest Neighbor (NN) methods. Maleh et al
[10] apply either a quadratic Gaussian classifier or an NN classifier. Shao et al [44]
apply a multilayer perceptron combined with a genetic algorithm to achieve 16-
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class classification. Lu et al [30] apply an algorithm based on K-nearest neighbor
classifier and Linear Spectral Pairs Vector Quantization to determine speech /
non-speech segments. Foote [19] uses a tree structure quantizer for speech/music
classification. More modern approaches have also been tested like Nearest Fea-
ture Line Method [27] which performs better than simple NN approaches, and
Support Vector Machines [21], [32]. Results are quite satisfactory.

State of the art in the classification methods for event detection is not com-
pletely described by the preceding categorization. Hybrid approaches that com-
bine the aforementioned ideas are equally significant. The classifier proposed by
Lu et al [30] is such an example. In the first stage, a variation of classical pattern
analysis algorithms is applied to discriminate between speech and non-speech seg-
ments, then a finer classification is achieved by a rule-based schema and finally
speaker clustering is performed by model-based analysis.

6.4.2 Musical instrument classification

The problem consists of a system being able to identify the instruments perform-
ing over an audio signal for a specific time frame. Whilst the problem of auto-
matic instrument identification in polyphonic music by using the whole spectra
of orchestral instruments still remains unsolved, the automatic classification of
musical instruments in monophonic music has produced interesting results.

As far as monophonic audio streams are concerned, Brown [7] attempted to
automatically classify sound segments consisting 4 classes of woodwind instru-
ments (oboe, saxophone, clarinet and flute) using files derived from the UIOWA
database. The features used were cepstral coefficients, bin-to-bin differences, con-
stant Q-coefficients and autocorrelation coefficients, with correct identification
results were at 79%-84%, comparable to human perception experiments. Eronen
[11] attempted to classify isolated instrument tones of 30 instrument classes taken
from the MUMS database (1498 samples total). By using a total of 43 features,
ranging from temporal to spectral and a hierarchical classification framework
utilizing the k-NN algorithm, he achieved 80.6% correct classification rate for
individual instruments. Likewise, Marques [31] classified instrument tones (of 0.2
sec duration) for 8 musical instrument classes using Gaussian Mixture Models
(GMMs) and Support Vector Machines (SVMs) for classification. 1024 train-
ing segments and 100 test segments were utilized for the experiments, taken from
various recordings, and the features extracted were Linear Prediction Coefficients
(LPCs), cepstral and mel-cepstral coefficients. The correct classification rate was
at 70%. More recently, Slezak [51] applied temporal and spectral descriptors to
sound data taken from the MUMS collection, consisting of 18 instrument classes.
The features extracted were mainly taken from the MPEG-7 Audio framework:
length, attack, decay, steady, harmonicity, fundamental frequency and brightness.
Rough set decision rules and k-NN algorithms were used for classification, which
at best reached 68.4% correct classification rate.
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In an early work [15] the authors use psychoacoustic models to describe the
similarity of instrumental sounds and organize a collection of instrument sounds
using a Self-Organizing Map. For each instrument a 300 milliseconds sound was
analyzed, extracting steady state sounds with a duration of 6 milliseconds. These
steady state sounds can be regarded as the smallest possible building blocks of
music. Contrary to pure classification tasks, the goal of this work was to form
a basis for exploratory analysis of instrument sounds, offering a possibility to
browse through groups of similar sounds.

At the present time, research has been focusing more on the area of instrument
classification for polyphonic music. The first step in such a method is naturally to
separate the audio stream into the different monophonic instrument sounds, and
afterwards to classify the various instruments using the same methods as proposed
before. Essid [12] has proposed a method for polyphonic instrument recognition,
making possible to recognize up to 4 instruments playing concurrently. The
system associates a hierarchical classification tree with a class-pairwise feature
selection technique and GMMs to discriminate the possible instrument combina-
tions. The features used are mel-frequency cepstrum coefficients, zero-crossing
rate, autocorrelation coefficients, along with spectral features such as spectral
centroid, spectral width, spectral asymmetry and the MPEG-7 spectrum flatness
descriptor. With this proposed method, an average success rate of 90.88% is
achieved, using samples from a jazz database. Wang [49] proposed a different
method for polyphonic music separation, which is based on non-negative matrix
factorization (NMF) techniques. By performing the NMF algorithm on the mag-
nitude spectrogram of the audio stream, the signal is decomposed into temporal
and spectral components. Two different experiments onto two audio stream were
performed, but whilst the decomposition was highly accurate, the recovered com-
ponents were manually classified. Research that could be performed in the future
could focus on an automatic grouping method of the different components.

6.4.3 Musical genre classification

The problem of musical genre classification is referred as automatically classifying
pieces of music to a hierarchy of musical genres and due to its subjective nature
(the definitions and taxonomies vary) is an ill-defined problem. Some attempts
have been made for a classification of basic musical genres, but the area has not
yet been fully explored. A thorough survey on the various approaches on genre
classification is conducted on [3], which confirms the existence of three different
musical genre extraction approaches: a manual classification of titles, supervised
classification techniques and data mining techniques such as co-occurrence anal-
ysis.

As far as pattern recognition approaches are concerned, Tzanetakis [47] pro-
posed a system for classification of 20 musical genres, using spectral and rhythmic
features. 2000 audio files were used in total and a classifier based on GMMs, while
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the genre classification accuracy for ten genres reached 61%, a result comparable
to human musical genre classification.

Scheirer [43] presented a model of human perceptual behavior and briefly
discussed how his model can be applied to classifying music into genre categories
and performing music similarity-matching. However, he has not applied his model
to large scale music collections. The collection he uses consisted of 75 songs from
each of which he selected two 5-second sequences.

A more recent study by Xu [56] uses as extracted features the beat spectrum,
the LPC-derived cepstrum, zero-crossing rate, spectrum power and MFCCs. Four
different genre classes are taken into consideration, consisting of 100 total sam-
ples. The main classifier developed is based on SVMs and the results show 6.86%
error rate, while the GMM classifier achieves 12.31%. Generally, the pattern
recognition approach for genre classification is limited by inconsistencies of the
built-in taxonomy and the assumption that genre can be assessed from signal
attributes.

In [28] the authors use a combined approach of 3 feature sets for music genre
classification on 3 databases: Rhythm Patterns describe loudness modulation
amplitude per modulation frequency based on a critical bands accummulated
spectrum and including psycho-acoustics. The statistical spectrum descriptor
contains statistics about the spectral features. The Rhythm Histogram summa-
rizes modulation energy per modulation frequency. Together, the features achieve
up to 84.24 % classification accuracy (698 audio files, 8 genres) using SVMs.

Further state-of-the-art approaches have participated in the 2005 MIREX
(Music Information Retrieval Evaluation eXchange).

6.5 Content-based Organization and Browsing

While actually being addressed by a specific, separate Workpackage within MUS-
CLE, we briefly would like to point to some recent work that utilized the concepts
of the work described so far in order to build user interfaces and access methods
for audio repositories. While being far from complete, the main intention of this
section is to provide a brief flavour of activities herein, bridging the gap between
content based description of audio and its potential utilization.

One of the core tasks of content-based description of audio is to support
retrieval tasks. An overview of a range of music retrieval systems has recently
been presented by Typke et al. [34] A system supporting browsing audio streams
is the Sonic Browser [17]. In [16] this line of research is continued evaluating
the browsing of everyday sounds. The investigation is directed at comparing
browsing single versus multiple stream audio.

A different approach is taken by the SOMeJB system, i.e. the SOM-enhanced
Jukebox [40]. The goal is to automatically create an organization of music
archives following their perceived sound similarity. More specifically, charac-
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teristics of frequency spectra are extracted and transformed according to psy-
choacoustic models. The resulting psychoacoustic Rhythm Patterns are further
organized using the Growing Hierarchical Self-Organizing Map (GHSOM), an
unsupervised neural networkbased on the Self-Organizing Map. On top of this
advanced visualizations including Islands of Music (IoM) and Weather Charts [38]
offer an interface for interactive exploration of large music repositories. Interac-
tive zooming, browsing and playlist generation are supported by the PlaySOM
application [35]. Other interfaces building on the same or similar concepts are
currently gaining larg epopularity, such as the Databionic Music Miner [41] using
very large and sparsely populated SOMs.

Of course, ranges of other approaches and representations are being devised,
integrating metadata, or utilizing symbolic music representation rather than pure
audio as covered in this report.

6.6 Conclusions

In this report, we have presented the state of the art in the area of content-based
description of audio. From the preceding discussion it becomes obvious that re-
search in this field has been rather active in recent years. Although the achieve-
ments have been important, there is a number of key issues that still remain
open. Generalization, robustness and real-time operation constitute challenging
problems that ongoing research has to face. It seems that a widely accepted
solution in the case of a general audio stream has not yet been proposed.

Furthermore, the much-proclaimed bridging of the semantic gap, i.e. under-
standing which concepts are actually burried withing a given set of audio data,
and how to extract and convey this, is still far from being finished. The individ-
ual sub-disciplines touched upon in this report are in many cases still far from a
commonly accepted model of the precise description and evaluation of their en-
deavours. For example, the concept of “genre” is still under hefty debate within
the community aiming at genre classification, and its conceptual differences from,
say, artist classification, are subject to ongoing discussion.

Feature extraction is still progressing steadily towards a better capture of
specific characteristics of audio, particularly suitable to specific tasks of semantic
annotation, whereas some of the main progresse obtained at this years’ MIREX
audio description contest have been obtained by significant improvements in op-
timized machine learning algorithms.

Furthermore, first works integrating, for example, textual and audio data
to obtain more robust extraction and representation of semantic concepts, are
beginning to appear, hinting at the potential of cross-modal analysis.

Further investigation of these areas is clearly warranted. Semantic interpre-
tation of multimedia data will surely benefit from any possible improvements in
the field of event detection in audio streams.
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6.7 Related URLs

Related research projects:
http://research.microsoft.com/users/llu/Audioprojects.aspx

Audio search technologies:
http://www.musclefish.com

Audio mining technologies:
http://www.nexidia.com/

http://www.bbn.com/speech/am.html

Audio search using speech recognition:
http://speechbot.research.compaq.com/

Search the web for sounds:
http://www.findsounds.com/index.html

Musical audio mining:
http://www.ipem.rug.ac.be/MAMI/

Music Information Retrieval Evaluation eXchange
http://www.music-ir.org/mirexwiki/index.php/Main_Page

SOMeJB: The SOM-enhanced jukebox.
http://www.ifs.tuwien.ac.at/~andi/somejb

RISM. Repertoire international des sources musicales.
http://rism.stub.uni-frankfurt.de

Musica. the international database of choral repertoire.
http://www.musicanet.org

Marsyas: A software framework for research in computer audition.
http://www.cs.princeton.edu/~gtzan/wmarsyas.html

Harmonica. accompagnying action on music information in libraries.
http://projects/fnb/nl/harmonica

Cantate. computer access to notation and text in music libraries.
http://projects/fnb/nl/cantate
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Chapter 7

Robust Features for Automatic
Speech Recognition Systems

7.1 Introduction

Since the early scientific or fictitious envisagements of intelligent machines at Bell
Labs, Lincoln Labs, or Clarke and Kubrick’s Space Odyssey, computer systems
have become ubiquitous, storing huge quantities of multimodal data (combina-
tions of speech, audio, text and video). Managing this information is essential
for the creation of a knowledge-driven society. Towards this direction, Auto-
matic Speech Recognition (ASR) seems to be one of the most important tasks
that should be successfully dealt with.

ASR technology has developed rapidly. The pioneering work of the first
research years (Filterbanks, Spectrogram, Linear Prediction Coding) has been
followed by several fundamental achievements (Dynamic Time Warping, Mel-
Cepstral Coefficients, Hidden Markov Models). Although significant contribu-
tions have been made, ASR systems haven’t yet reached the desirable standards
of functionality in ordinary (everyday) conditions. Robustness is one of the main
attributes that ASR systems lack. This could be tackled by the application of
speech enhancement techniques, extraction of robust features for speech repre-
sentation, or, finally, by model compensation.

As far as feature extraction is concerned, the main research areas cannot be
easily classified in completely distinct categories, since the cross-fertilization of
ideas has triggered approaches that combine ideas from various fields. Filter-
bank analysis is an inherent component of many techniques for robust feature
extraction. It is inspired by the physiological processing of speech sounds in
separate frequency bands that is performed by the auditory system. Auditory
processing has developed into a separate research field and has been the origin
of important ideas, related to physiologically and perceptually inspired features
[16, 27, 51],[19, 21]. Equally important is the research field based on concepts rel-
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evant to speech resonance (short-term) modulations. Both physical observations
and theoretical advances support the existence of modulations during speech pro-
duction [52, 30],[37]. Other approaches are related to the long-term modulation
spectrum [26, 11] and the features derived from that [23],[21], [22], which could
be perceptually based or variants of noise robust features. Finally, special at-
tention should be paid to the techniques [34, 38, 40, 4] that attempt to model
nonlinear phenomena of the speech production system [52, 30]. These may quan-
tify aerodynamic phenomena like turbulence and/or modulations, that the linear
source-filter model cannot take into consideration.

7.2 Filterbanks

The corresponding group of ASR features is based on the idea of decompos-
ing speech along the frequency domain using several overlapping bandpass fil-
ters. The filterbank scheme is motivated by observations made by Allen [2] and
Fletcher [13]. They have provided evidences that the human auditory system
processes speech in separate frequency bands and extracts their spectral content.
The human cognitive system classifies the speech events accordingly. The most
common features for ASR tasks are the time-localized energies of the different
frequency bands, [39]. These features map the spectral subband energies to the
appropriate acoustic events (phonemes). A common practice is to train separate
recognizers to process each one of the band components.

For the definition of a filterbank certain parameters are required. These pa-
rameters are the number of filters, their placing (the center frequencies), their
bandwidths and the type of filters used. The number of filters cannot be too
small otherwise the ability to resolve the speech spectrum could be impaired.
Also, their number cannot be too large because the filter bandwidth would be
too small and some bands would have very low speech energy. The most common
range for the number of filters is between 6 and 32 [48]. The filter placing can
be linear where the center frequencies are spaced uniformly to span the whole
frequency range of the speech signals. An alternative to uniform filterbanks is
to space the filters uniformly along a logarithmic frequency scale (e.g. the Mel
scale). Such a logarithmic frequency scale is motivated by the human auditory
perception process. Finally, a common non-uniform filterbank placing is the crit-
ical band scale (Bark scale). The spacing of the filters along the critical band
scale is based on perception studies and is intended to choose bands that give
equal contribution to speech articulation [48]. The third parameter is the filters’
bandwidths, which depend on the placing, the number and the desired overlap of
the filters. It is common practice that the filter bandwidths are not equal along
the frequency axis. Finally, many different types of bandpass filters have been
proposed during the past few years depending on the analysis/recognition tasks.
For instance, gammatone filters are popular for auditory speech analysis [28]. An
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alternative option are Gabor filters [10, 45] which have optimal time-frequency
resolution.

Mel Frequency Cepstral Coefficients–MFCC: The MFCC are the most
commonly used feature set for ASR applications. They were introduced by Davis
and Mermelstein [9]. Cepstrum analysis can enable the separation of convolved
signals. In the linear source-filter model such convolved signals are the source
excitation signal and the impulse response of the vocal tract filter. So, the vocal
tract’s distortions to the speech signal can be removed.

The wide-spread use of the MFCC is due to the low complexity of the estima-
tion algorithm and their efficiency in ASR tasks. In detail the algorithm consists
of the following steps. The magnitude-squared of the Fourier transform is com-
puted and triangular frequency weights are applied. These weights represent
the effects of the peripheral auditory frequency resolution. Then, the logarithmic
outputs of the filterbank are used for the estimation of the cepstrum of the signal.
Finally, the feature vectors are estimated with the discrete cosine transform in
order to reduce the dimensionality and decorrelate the vector components. These
features are smoothed out by dropping the higher-order cepstra coefficients.

Even though MFCC are the most common features for ASR tasks, they appear
to have major disadvantages. At first, as most HMMs use Gaussian distributions
with diagonal covariance matrices, they cannot benefit from a cepstral liftering,
since any multiplying factor that is applied to the observations does not affect the
exponent calculation. Second, MFCC are easily affected by common frequency-
localized random perturbations which have hardly any effect on human speech
communication. Finally, robust feature extraction should process at least about
syllable-length (around 200-500 ms) spans of the speech signal [23], in order to
extract reliable information for classification of the phonemes.

Another different filterbank approach was proposed by Hermansky [24] and
Boulard [7]. They examined Fletcher’s proposal [13] to divide the speech spec-
trum into a number of frequency subbands and extracted spectral features from
each of these. However, the recognition/classification task is done independently
in each one of the bands by estimating the conditional probabilities for each band.
Then, these estimates are merged in order to give the final output feature set.
The merging is done by a multi-layer perceptron (MLP) trained on the same
training data as the HMM-based classifiers. The input feature set is the power
spectrum values obtained after the PLP critical band filtering, the compression
by a cubic-root function and loudness equalization. These features showed a rel-
ative improvement of about 50% (compared to the MFCC) in the presence of
frequency selective additive noises which corrupted only some of the frequency
bands. On the other hand, they were ineffective for noises that corrupted the
whole speech spectrum.

Subband Spectral Centroids: These features have been introduced by
Paliwal et al, [15]. They can be considered as histograms of the spectrum energies
distributed among nonlinearly-placed bins. They show properties similar to those
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of the distributions of the formant frequencies and they appear to be quite robust
to noise. They can be used as a supplementary feature set to cepstral features.
Note that the conventional feature sets like the MFCC utilize only amplitude
information from the speech power spectrum while the proposed features utilize
frequency information, too. It should be stated, though, that these features failed
to show significant improvement at the recognition rates when compared to the
MFCC.

7.3 Modulations

7.3.1 Short-term Modulations

The linear model of speech makes the assumption that resonances (and the cen-
ter frequencies of the formants) remain constant for relatively short amounts of
time. A nonlinear model proposes that these resonances are not constant but
can fluctuate around their center frequency and can be modeled as a sum of
AM-FM signals [37]. Short-term modulation features attempt to quantify these
fluctuations and capture the temporal and dynamic nature of the speech reso-
nances. The improvement of the recognition rates supports the accuracy of such
a nonlinear model [10]. These features are used to enhance the classic cepstrum-
based features as an augmented feature set for ASR applications and they show
robustness in noisy speech signals due to the use of the filterbank and the Energy
Separation Algorithm (ESA).

Alternatively, other algorithms have been proposed to obtain the instanta-
neous amplitude and frequency signals from the bandpassed speech. Such ap-
proaches use Kalman filtering [41] and the Hilbert transform [44]. The first
approach has high computational complexity and cannot be used for real-time
applications. The latter one has poor temporal resolution and rapid changes are
smoothed out.

Finally, some experimentation has been done with merging the source-filter
model with the nonlinear model of the resonances for the estimation of MFCC-
like features. More specifically, the square amplitude of the bandpassed speech
signals is replaced by the nonlinear Teager energy [29] in the standard estimation
algorithm of the MFCC feature set. The correct phoneme recognition rates have
shown marginal differences for clean speech signals when compared to the MFCC
corresponding rates. This is due to the post-processing smoothing effect of the
MFCC (i.e. cutting off the higher-order cepstra coefficients). However, the Teager
energy-based MFCC features seem to be smoother and more robust for noisy
signals and yield improved results.

Frequency Modulation Features: A mel-spaced Gabor filterbank of 6-
filters is used in order to bandpass the speech signals. These signals are demod-
ulated using the ESA and the instantaneous frequency and amplitude signals
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are yielded. Then, the 1st and 2nd moments of the instantaneous frequencys are
estimated. The Frequency Modulation Percentages (FMP) are the ratio of the
second over the first moment of these signals [10]. These spectral moments have
been tested as input feature sets for various ASR tasks yielding improved results.
For the TIMIT phoneme recognition task the correct phoneme accuracy rates are
40% for the FMPs compared to 55% for the MFCC using though half the vector
length of the MFCC. In the AURORA-3 database word recognition task, the
relative improvement is 16% compared with the auditory features [8] and 50%
when compared with the MFCC [10].

Amplitude Modulation Features: Other nonlinear feature sets have been
proposed taking under consideration the amplitude modulated (AM) part of the
nonlinear speech model. The algorithm described above (the filterbank and the
demodulation algorithm) has been used to estimate the instantaneous amplitude
signals (absolute envelopes) of the bandpassed speech signals. These envelopes
are modulated by lowpass signals containing the linguistic information, [10]. The
proposed feature set parametrizes the modulating signals and yields their statis-
tics (their 1st and 2nd spectral moments). This feature set shows a statistically
important improvement compared to the baseline accuracies of the MFCC. Re-
cent experiments on these features indicate that they are noise invariant, mainly
due to their lowpass nature. Namely the instantaneous amplitudes are lowpass
signals and, concequently, more robust in noise. Their estimates appear to be
very smooth, in terms of spikes and discontinuities, even at low SNR. It has been
shown that they contain significant amount of information concerning both the
speaker and the linguistic content of the speech signals [46].

The instantaneous amplitude signals, and their corresponding modulating sig-
nals, have a very slow temporal evolution. This property is exploited from another
viewpoint by research in long-term modulations i.e. the Modulation Spectrogram.
The short and long-term modulations are two different concepts of the speech
production mechanism. The short-term modulations are studied in time-windows
up to 10-30ms in order to capture the micro-details (very rapid changes) of the
speech signals. On the contrary, long-term modulations examine the temporal
evolution of the speech energy and the corresponding time-windows are in the
range of 200-500ms.

7.3.2 Long-term Modulations

Early experiments [12, 11, 26] on the perceptual ability of the human auditory
system have shown that slow temporal modulations differ as far as their relative
importance on different frequencies is concerned. In detail, speech intelligibility
is not affected by low-pass filtering below 16 Hz, or high-pass filtering above 4 Hz.
Furthermore, intelligibility in noise depends on the integrity of the modulation
spectrum in the range between 2 and 8 Hz, on the global shape of the spectral
envelope and not so much on its fine details [31]. Finally, the duration of the
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dominant component (around 4 Hz) is related to the average duration of syllables.
Typical short-time feature extraction methods (filterbank energies, LPC, Cep-

strum, MFCC, PLP) form a representation of the spectral envelope of the signal
framewise. This has the drawback of being sensitive to background noise. For
example at particular frequency components, part of the signal that lies 100ms
outside a certain phonetic labeled segment may still carry information relevant
to the classification of the given phoneme [55].

The relative importance of the different frequencies of the modulation spec-
trum is supported in terms of recognition experiments by the different contri-
butions of spectrum components. When the lowest frequency band is removed
(cutoff frequency of 1Hz) the accuracy is increased to 93.6% compared to 86%
for the unfiltered modulation spectrum. The relative contributions of the vari-
ous bands of the modulation spectrum, as far as different features are concerned
(MFCC, PLP), do not show major differences. The subband that has the maxi-
mum contribution is in the range of 2-4Hz of the spectrum. For filterbank related
features [31] the more important contribution is in the subband of 4-8Hz and gets
more affected by convolutional noise than MFCC and PLP.

The Dynamic Cepstral Coefficients method [14] attepmts to incorporate long-
term temporal information. These coefficients are computed by first- and second-
order orthogonal polynomial expansions of feature time trajectories, referred to
as “delta and acceleration coefficients”. They have become a standard method
followed by every ASR system and are robust to slowly varying convolution dis-
tortions. Alternatively, in the method of Cepstral Mean Normalization the long-
term average is substracted from the logarithmic speech spectrum and convolutive
noise is suppressed.

An alternative to the DC component removal (i.e. Cepstral Mean Normal-
ization), is to use a high-pass filter. In Relative Spectral Processing (RASTA)
[21, 22] the modulation frequency components that do not belong to the range
from 1 to 12 Hz are filtered out. Thus, this method suppresses the slowly varying
convolutive distortions and attenuates the spectral components that vary more
rapidly than the typical rate of change of speech.

Relative Spectra Processing–RASTA: RASTA processing has fundamen-
tal relations to both the temporal properties of hearing and the equalization of
speech [21]. It achieves a broader, than the delta features, pass-band by adding
a spectral pole, and allows the preservation of the linguistic content. RASTA
band-pass filtering is applied either on the logarithmic spectrum or on a nonlin-
early compressed spectrum and consists of filters with a sharp spectral zero at
the zero modulation frequency. The moving average (MA) part of the RASTA
filters is derived from the delta features. The spectral pole of the autoregressive
(AR) part is obtained through experimentation and determines the high-pass
cut-off frequency. The RASTA algorithm consists of the following steps. At first,
the critical-band power spectrum is computed. Then, the spectral amplitude is
transformed through a compressing static nonlinearity, and the time trajectories
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of each transformed spectral component are filtered. The filtered speech represen-
tation is transformed through an expanding static nonlinearity and is multiplied
by the equal loudness curve raised to the power 0.33 in order to simulate the
power law of hearing. Finally, an all-pole model of the resulting spectrum is
computed.

Several variations have been proposed using a different nonlinear spectral
domain than the logarithmic one like the J-RASTA and the Lin-Log RASTA
algorithms. The use of such variations improves the correct recognition rates
because they simulate more realistically the physiological hearing processes.

Many experiments have been performed in order to examine and compare the
RASTA features to other analysis schemes such as the PLP and the PLP+Cepstral
Mean Removal. Both logarithmic RASTA and cepstral mean removal improve
the recognition rates for convolutional noise. However, PLP, logarithmic RASTA
and cepstral mean removal all degrade severely in additive noise. Lin-Log RASTA
with a linear mapping shows good robustness over both convolutional and ad-
ditive noise. While cepstral mean subtraction performed better for purely con-
volutional noise, it was not as effective as the Lin-Log RASTA approach when
additive noise was present.

Temporal Patterns–TRAP: This method was introduced by Hermansky et
al. [23]. Conventional features in ASR describe the short-term speech properties.
On the other hand, the TRAP features describe likelihoods of sub-word classes at
a given time instant, derived from temporal trajectories of band-limited spectral
densities in the vicinity of the given time instant.

Coding of linguistic information in a single short-term spectral frame of speech
appears to be very complex. A single frame of such a short-term spectrum does
not contain all the necessary information for the decoding scheme as the neigh-
boring speech sounds influence the short-term spectrum of the current one. The
mechanical inertia of human speech production organs results in spreading the
linguistic information in time. At any given time at least 3-5 phonemes inter-
act. This introduces high within-phoneme variability of the spectral envelope.
ASR systems attempt to classify phonemes from individual slices of the short-
term spectrum and need to deal with this within-class variability, even though
experiments show that human listeners are not affected by such phenomena.

Such ASR systems expect feature vectors of uncorrelated and normally dis-
tributed features every 10 ms. So, a process is needed that is capable of ex-
amining long spans of speech within various frequency bands and deliver every
10 ms uncorrelated and normally distributed features. The proposed algorithm
TRAP-TANDEM is such a module. The tandem submodule is an hierarchical
tree-based structure that splits speech into different sound classes e.g. voiced,
unvoiced, silence, etc.

This processing scheme is capable of examining relatively long spans of the
speech signal within various frequency bands. It uses MLP (Multi-Layer Per-
ceptron) to provide nonlinear mapping from temporal trajectories to phoneme
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likelihoods. The TRAP processing uses relatively long time windows (500-1000
ms) and frequency localized (1-3 Barks) overlapping time-frequency regions of
the signal. The TANDEM algorithm refers to a way of converting the frequency-
localized evidence to features for the HMM-based ASR systems.

The time-frequency spectral density plane is estimated using the front-end
taken from the PLP analysis. It employs the short-time spectral analysis of the
speech signal using a Bark-spaced filterbank. The input to the TRAP estimator
consists of 1-3 time trajectories of critical-band energies. The individual trajecto-
ries are concatenated to form a longer input vector, and finally, PCA is introduced
in order to reduce the vector’s dimensionality.

TRAP estimator delivers vectors of posterior probabilities sub-word acoustic
events, each estimated at an individual frequency band. The events targeted are
the phonemes clustered into 6 broad phonetic classes, and separate estimators
are trained for each frequency region of interest.

The TANDEM part derives a vector of posterior probabilities of sub-word
speech events for every speech frame from the evidence presented to its input.
An MLP is used in order to optimally cluster the input vectors. and estimate
the posterior probabilities of the individual classes. These probabilities are post-
processed by a static nonlinearity in order to match the gaussian probability
distributions, and whitened by the KL transform derived by the training data.

The events targeted by the TRAP estimators do not need to be the same
as those targeted by the TANDEM estimator. Also, TRAP estimators can be
trained on different databases than the databases used in training the TANDEM
estimator. Note that both the TRAP and TANDEM estimators are nonlinear
feed-forward MLP discriminative classifiers.

So far, the TRAP-TANDEM features have been found more useful in combi-
nation with the conventional spectrum-based features like PLP and MFCC, where
they brought more than 10% relative improvement (for the DARPA EARS pro-
gram). Nowdays, the performance of the TRAP-TANDEM stand-alone features
is becoming comparable with the traditional approaches. For example, for the
OGI Numbers task they yield the same (5%) word error rate as the best system
using the PLP+Delta+DDelta features. Finally, for the TIMIT database task
the TRAP-based features gave 10% relative improvement in the phoneme error
rates compared to the MFCC.

7.4 Auditory-based Features

The human auditory system is a biological apparatus with ideal performance,
especially in noisy environments. Various ASR approaches incorporate charac-
teristics of this system. The adaption of physiologically based methods for spec-
tral analysis [16] is such an approach. The physiological model of the auditory
system can be categorized into the areas of outer, middle and inner ear [48]. The
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cochlea and the basilar membrane, both located in the inner ear, can be modeled
as a mechanical realization of a bank of filters. Along the basilar membrane are
distributed the Inner Hair Cells (IHC), which sense mechanical vibrations and
convert them into firing of the connected nerve fibers which in turn emit neural
impulses to the auditory nerve.

Inspired by the above ideas, the Ensemble Interval Histogram (EIH)
model is constructed by a bank of ‘cochlear’ filters followed by an array of level
crossing detectors that model the motion to neural conversion. The probability
distributions of the level crossings are summed up for each cochlear filter resulting
on the ensemble interval histogram. Front-ends that use ideas of this approach
have shown comparable recognition rates to common spectrum-based features.
Moreover, they are characterized by increased noise resistance for lower SNR’s
[17].

Lateral inhibition is another characteristic that has been introduced into
periphery models. This is defined as the suppression of the activity of nerve
fibers on the basilar membrane caused by the activity of adjacent fibres. It
accounts for the phenomenon caused when two tones of different amplitude are
similar in frequency, leading to an inhibition in the perception of the weaker one.
The aforementioned phenomenon has been used to improve noise robustness by
convolving a frequency dependent lateral inhibition function with noisy speech
[56]. Since narrowband SNR is higher on spectral peaks, by emphasising these
areas and attenuating spectral valleys, the signal’s SNR increases.

The Joint Synchrony/Mean-Rate model [50, 51] captures the essential
features extracted by the cochlea in response to sound pressure waves. It includes
parts that deal with peripheral transformations occurring in the early stages
of the hearing process. These parts attempt to extract information relevant
to perception, such as formants, and enhance sharpness of onset and offset of
different speech segments. In detail, the speech signal is first pre-filtered through
a set of four complex zero pairs to eliminate the very high and very low frequency
components. Then it passes through a 40-channel critical-band linear filter bank
whose single channels were designed in order to fit physiological data. Next,
the hair cell synapse model is intended to capture prominent features of the
transformation from basilar membrane vibration, represented by the outputs of
the filter bank, to probabilistic response properties of auditory nerve fibers. The
outputs of this stage represent the probability of firing as a function of time for
a set of similar fibers acting as a group. The two output models that follow
are the Generalized Synchrony Detector (GSD) and the Envelope Detector (ED).
GSD which implements the known ”phase-locking” property of nerve fibers, is
designed with the aim of enhancing spectral peaks due to vocal tract resonances.
ED computes the envelope of the signals at the output of the previous stage of the
model and is important for capturing the very rapidly changing dynamic nature
of speech.

An important type of filter that has been proposed for auditory processing
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is the gammatone function [28]. This has been shown to describe impulse-
response data gathered physiologically from primary auditory filters in the cat.
The gammachirp is constructed by adding a frequency modulation term to the
gammatone function. This function has minimal uncertainty in joint time/scale
representation. The gammachirp auditory filter is the real part of the analytic
gammachirp function, has an asymmetric amplitude characteristic and provides
an excellent fit to human masking data.

Auditory peripheral modeling is another area that incorporates auditory
characteristics. These include critical band filtering, loudness curve properties,
nonlinear energy compression, haircell modeling and short-time adaptation. By
the use of such models there are improvements in the temporal localization and
speech detectability in degraded environments, resulting in increased system ro-
bustness to noise.

Perceptual linear prediction (PLP) is a variant of Linear Prediction Cod-
ing (LPC) which incorporates auditory peripheral knowledge [19, 20]. The main
characteristics for estimating the audible spectrum are realized by adding critical
band integration, equal-loudness pre-emphasis and intensity to loudness com-
pression. More specifically, the method considers the short-term power spectrum
and convolves it with a critical-band masking pattern. Then, the critical band
is resampled at about one Bark scale intervals. A pre-emphasis operation is per-
formed with a fixed equal loudness curve and finally the resulting spectrum is
compressed with a cubic root nonlinearity. The output low-order all-pole model
is consistent with phenomena observed in human speech perception. It simulates
the properties of the auditory system resulting in parameters compatible with
LPC. The main advantage of PLP is the reduction of the order of the model (e.g.
5 coefficients vs. 15 for LPC).

7.5 Fractal-based Features

One of the latest approaches in speech analysis are the nonlinear/fractal methods.
These diverge from the standard linear source-filter approach in order to explore
nonlinear characteristics of the speech production system. They are based on
tools that lie in the areas of fractals and dynamical systems. Their motivation
stems from the observations of aerodynamic phenomena in speech production
[52, 30]. Specifically, airflow separation, unstable air jet, oscillations between the
walls and vortices are phenomena encountered in many speech sounds and lead
to turbulent flow. Especially fricatives, plosives and vowels uttered with some
speaker-dependent aspiration contain various amounts of turbulence. Moreover,
the presence of vortices could result in additional acoustic sources. The initial
significant contributions [52, 30] are further supported by acoustic and aerody-
namic analysis of mechanical models [5, 25]. On the other hand it has been
conjectured that geometrical structures in turbulence can be modeled using frac-
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tals [35]. Difference equation, oscillator and prediction nonlinear models were
among the early works in the area [47, 33, 54]. Speech processing techniques that
have been inspired by fractals have been introduced in [36, 38]. These measure
the roughness of the signal in multiple scales as a quantification of the geometrical
complexity of the underlying signal. Their application as short-time features in
ASR experiments has shown significant improvement of 12%-18% error reduction
in the tough recognition task over the E-set ISOLET database [38].

Recently various approaches [18, 34, 40, 53, 6, 49] apply such fractal-based
measurements on reconstructed multidimensional phase spaces instead of the one-
dimensional signal space. They argue that the multidimensional reconstructed
space is closer to the true speech production dynamics compared to the one di-
mensional speech signal. The latter can be seen as a collapsed projection from
a higher dimensional space. The analysis is carried out by computing invariants
of the multidimensional signals, which are the fractal dimensions and Lyapunov
exponents [32], [4], [43]. Generalized dimensions [42],[3] and multifractal spec-
trum [1] are alternative representations of the underlying geometrical complexity.
Special cases include the standard fractal dimension (box-counting, Minkowski-
Boulingand dimension), correlation dimension and information dimension. It
should be noted that this field is not fully developped yet because the observed
phenomena are neither completelly understood nor directly related to the vari-
ous approaches and models reported. Moreover, a suitable way to integrate such
analysis in ASR systems is not a simple task and only preliminary results have
been reported [38].

7.6 Discussion

In this report we have presented briefly the main trends for robust feature extrac-
tion techniques in ASR systems. Feature extraction methods can be categorized
into overlapping classes that share a number of common ideas. The most com-
mon ideas are related to filterbank processing, features inspired by the physiology
of the auditory system, features utilizing perceptual knowledge, or inspired by
phenomena that occur during speech production (e.g. modulations). A review of
the proposed features for ASR systems indicates that cepstral analysis and the
MFCC [9] features have become one of the most common approaches. A popu-
lar alternative are the PLP [20] or related features that are based on knowledge
of the human auditory peripheral system. Finally, nonlinear speech processing
techniques (e.g. modulations, fractals) have started to gain momentum. Many
techniques share the concept of short-time processing. However, recently there
have been introduced alternative methods e.g. RASTA [21] ,TRAP [23] that filter
out parts of the modulation spectrum or process frames that span longer time
intervals. There are not direct comparisons for every proposed feature set, but
implicit conclusions may be assumed by considering their absolute recognition
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results.
Concluding, although research in this area has been active for many decades,

robustness is still a key issue that should be considered. Thus more effort should
be placed in order to accomplish satisfactory performance in adverse acoustic
environments.

7.7 Useful URLs

Speech at Carnegie Mellon University:
http://www.speech.cs.cmu.edu

IDIAP Speech Processing Group:
http://old-www.idiap.ch/speech/speechNF.html

Center for spoken language understanding at Oregon Health and Science Uni-
vercity:
http://cslu.cse.ogi.edu

Center for Spoken language research at Univercity of Colorado:
http://cslr.colorado.edu

Spoken Language Systems at MIT Laboratory for Computer Science:
http://www.sls.csail.mit.edu/sls/sls-blue-nospec.html

The International Computer Science Institute Speech Group at Berkeley:
http://www.icsi.berkeley.edu/Speech/

Speech processing and Auditory perception laboratory at UCLA:
http://www.icsl.ucla.edu/~spapl

Various links of research groups:
http://mambo.ucsc.edu/psl/speech.html
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Chapter 8

Speech analysis

8.1 Description of the problem

Among the variety of acoustic signals the ear is exposed to, speech is one of the
few for which an approximated production model is available. All the speech
signals thus share common characteristics that are of interest for various areas
in automatic speech processing: speech synthesis, automatic speech recognition,
speech synthesis, hearing aids, telecommunications. . .

The production of a speech signal s(n) can be approximated as the convolution
of an excitation signal e(n) by a filter corresponding to the vocal tract h(n):
s(n) = e(n)∗h(n). In the spectral domain this equation becomes S(ω) = E(ω)×
H(ω).

Speech analysis aims at finding contributions of the excitation signal (noise
in the case of unvoiced sounds or periodic signal for voiced sounds) and of the
vocal tract filter, and separating these two contributions.

The excitation signal is produced by either the vibration of vocal folds (peri-
odic excitation) or the turbulent flow of air somewhere in the vocal tract (noise
excitation).

The filter corresponding to the vocal tract depends its geometrical shape and
thus depends on the position of speech articulators, i.e. the lower jaw, position
and shape of the tongue body, position of the tongue apex, aperture and rounding
of lips, larynx and velum position.

The three main areas of research in speech analysis are (i) spectral analysis,
(ii) the determination of the fundamental frequency and (iii) automatic formant
tracking.
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8.2 State of the art

8.2.1 Spectral analysis

The main objective of spectral analysis is to get a relevant spectrum of the vo-
cal tract filter. The main challenge is to get an information as independent as
possible of the excitation. The spectrum of a voiced excitation is a spectrum of
regularly spaced (the fundamental frequency F0) lines. The vocal tract spectrum
is thus ”sampled” by F0. The higher F0, the less the precision of the vocal tract
spectrum. This means that the vocal tract spectrum is not well approximated
for high F0 voices, i.e. for female speakers and children.

The first tool for spectral estimation is the well know Fourier transform. The
size of the analysing window influences the frequency smoothing. When the time
window is small (approximately 4ms) compared to the F0 period the smoothing
is strong and resonance frequencies of the vocal tract can be seen. However, the
spectrum depends on the location of the window with respect to F0 periods and
this solution is only used to display speech spectrograms used by phoneticians.
When the time window is long (approximately 32ms) compared to the F0 periods
the smoothing is weak and thus, harmonics (multiples of F0) are visible. Fourier
analysis is the basic tool for spectral analysis of speech. One of the difficulties is
the choice of the size and position or the analysing window with respect to the
periods of the fundamental frequency. There exists some reassignment methods
that reduce the effect of the window location by moving the spectral energy where
it should appear [11].

Beside Fourier transform there are two main families of spectral analyses in
speech processing. The first is that of linear prediction methods that correspond
to the assumption of an all pole model. The idea is to approximate the speech
sample s(n) by

∑k=p
k=1 aks(n − k). Parameters ak are obtained by minimising the

squared error over an analysing window. The spectrum can be easily calculated
from these coefficients. The advantage of this method is its low computation cost.
Its main disadvantage is that the underlying all pole hypothesis is only valid for
oral vowels and not for nasal vowels and consonants. There are a number of
derived methods, the selective linear prediction for instance, that enable the
analysis to be applied over a limited spectral region [10].

The second family is that of cepstral smoothing. The principle is to elimi-
nate the contribution of the excitation in a Fourier spectrum calculated over a
rather long window (approximately 32ms). The underlying idea is to compute
the inverse Fourier transform of the spectrum, called cepstrum, to isolate the
contribution of harmonics. This contribution appears as an isolated peak that
can be easily filtered. An extra Fourier transform gives the smoothed spectrum
(see [12] for a more detailed presentation). Derived from this idea Davis and
Mermelstein [2] proposed Mel cepstra that are calculated from the energy vector
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computed over a Mel1 filter bank after the Fourier transform. This enables a
more concise representation of speech spectra and removes speaker variability to
some extent. These Mel cepstral coefficients are widely used as input spectral
vectors in automatic speech recognition. There are interesting methods derived
from cepstral analysis. The spectral envelope method [7] is an iterative version
of the standard cepstral analysis that enables a good energy approximation in
the vicinity of harmonics. This gives a better approximation and a more steady
estimation of spectral peaks. The discrete cepstral analysis [3] approximates a
number of spectral points by a sum of cosinusoids. The spectral points have to be
chosen carefully to represent relevant spectral information. One therefore chooses
harmonics or other spectral peaks.

Despite their theoretical interest wavelets are not often used.

8.3 Determination of the fundamental frequency

The fundamental frequency is the frequency of vocal fold vibration. When vocal
folds vibrate, the vocal tract is excited by a periodic signal which gives rise to
voiced sounds. The fundamental frequency, called F0, often improperly called
pitch which is related to perception, plays a central role in speech analysis. In-
deed, the fundamental frequency the is the prosody parameter that gives into-
nation and, as explained above, has a major impact of the shape of the speech
spectrum. Its determination thus has received considerable attention. Further-
more, the fundamental frequency is very important within the framework of
speech coding and synthesis. There are basically two kinds of determination
method: (i) methods that operate in the time domain as the famous autocorre-
lation method [5, 12], and (ii) methods that operate in the frequency domain as
the cepstrum or spectral comb methods. The difficulties lie in the false determi-
nation of double F0 or half F0 values, and in the voicing decision, i.e. how to
decide whether a speech window corresponds to voiced or unvoiced speech. These
problems and the processing of noisy signal are the current challenges.

8.4 Automatic formant tracking

As explained in the introduction one of the objectives in speech analysis is to
find spectral information related to the vocal tract filter. Formants are spectral
peaks that correspond to the resonance frequencies of the vocal tract. As for-
mants directly derive from the geometrical shape of the vocal tract, they may
be exploited to recover the place of articulation and thus identify sounds pro-
nounced, especially vowels and other vocalic sounds. Formant tracks are utilised

1The Mel frequency is a non linear frequency scale that approximates the frequency resolu-
tion of the ear.
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to pilot formant synthesisers [6], to study coarticulation effects, vowel perception,
articulatory phenomena and in some rare cases to provide a speech recognition
with additional data [4].

Given the potential interest of formant data numerous works have been ded-
icated to the design of automatic formant tracking algorithms. Nature and
complexity of the problem explain the success of dynamic programming algo-
rithms [13, 14]. The first steps of these algorithms is the extraction of formant
candidates at each frame of the speech signal. The second stage is dynamic pro-
gramming that utilises the evaluation of transition costs between two frames.
Other algorithms aim at explaining the acoustic signal [1] or the spectrogram
energy. In [9, 8] we showed how active curves could be used to track formants.
The underlying idea is to deform initial rough estimates of formants under the in-
fluence of the spectrogram to get regular tracks close to lines of spectral maxima
which are potential formants.

8.5 Perspectives

Despite of constant efforts, automatic formant tracking remains an open chal-
lenge. This challenge is all the more important since good formant estimates could
be exploited in various areas of automatic speech processing: speech recognition,
synthesis, speaker identification. . . As formants are closely related to speech pro-
duction, analysis by synthesis methods are the most promising approach. More-
over, progress in speech production in terms of talking heads and speaker adap-
tation could provide additional constraints to improve results.

In the domain of F0 determination the robustness is still an open challenge, es-
pecially when performances are compared against those of human listeners who
are able to detect speech even in a strong ambiant noise. Improvement of F0
determination techniques is probably closely linked to the development of new
spectral analyses that achieve a better precision in the localization of energy.
Another potential source of improvement is a better cooperation with psychoa-
coustics that focuses on the human perception of acoustic signals and investigates
the reasons why the ear is far better than early processing of speech.
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Chapter 9

State of the art in
acoustic-to-articulatory inversion

9.1 Description of the problem

The acoustic-to-articulatory inversion consists in recovering the vocal tract shape
dynamics from the acoustical speech signal, that can possibly be completed by
the knowledge of the speaker’s face. Estimating the vocal tract shape from the
speech signal has received considerable attention because it offers new perspec-
tives for speech processing. Indeed, it would enable knowing how a speech sig-
nal has been articulated. This potential knowledge could give rise to a num-
ber of breakthroughs in automatic speech processing. For speech coding, this
would allow spectral parameters to be replaced by a small number of articula-
tory parameters[8] that vary slowly with time. In the case of automatic speech
recognition the location of critical articulators could be exploited[7] in a view
of discarding some acoustical hypotheses. For language acquisition and second
language learning this could offer articulatory feedbacks. Lastly, in the domain of
phonetics, inversion would enable knowing how sounds were articulated without
requiring medical imaging techniques.

Basically, the acoustic-to-articulatory inversion is an acoustical problem and
data are therefore formant frequencies, i.e. the resonance frequencies of the vocal
tract. However, formants cannot be extracted easily from the speech signal and
most of the existing methods thus need to be generalized to accept standard
spectral input data (for instance, Mel Frequency Cepstral Coefficients). This
represents a first difficulty to solve the inverse problem.

The main difficulty is that acoustic-to-articulatory inversion is an ill-posed
problem. There is no one-to-one mapping between acoustic and articulatory
domains and there are thus an infinite number of vocal tract shapes that can
produce the same formants and thus the same speech signal. Indeed, the problem
is under-determined because there are more unknowns than data. Generally the
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first three formant frequencies are used as data and there are more than six
articulatory parameters, for instance seven in the case of the famous Maeda’s
model [5]. One important issue is thus to add constraints that are both sufficiently
restrictive and realistic from a phonetic point of view.

9.2 State of the art

Most of the acoustic-to-articulatory methods rest on an analysis-by-synthesis ap-
proach. Indeed, among the variety of acoustical signals the ear is exposed to,
speech is one of the few an approximated production model is available for. The
synthesis corresponds to the use of an articulatory synthesizer that computes
speech spectra or formants from articulatory or geometrical parameters. Adjust-
ing the faithfulness of the articulatory synthesizer with respect to the static and
dynamic characteristics of the human vocal tract allows constraints to be put
on the shape of inverse solutions and thus the number of inverse solutions to be
reduced. The simplest articulatory models approximate the vocal tract shape
geometrically as a set of concatenated uniform tubes (generally between 6 and 8
tubes). Their main weakness is that they are unable to render the vocal tract
shape and that the total length of the vocal tract is an extrinsic parameter that
has to be calculated independently. More faithful models can be built from med-
ical imaging of the vocal tract. The 2D sagittal articulatory model proposed by
Meada [5] was derived from X-ray images and describes the vocal tract through
seven deformation modes. More recent models based on MRI images describe
the 3D shape of the vocal tract [2] articulatory parameters. The strong noise
and lying position imposed by a MRI machine create some discrepancies between
normal and MRI modes of articulation that cannot be evaluated with precision.
Even if they are more flexible than concatenation of uniform tubes they require
prior adaptation before being used for any speaker.

The number of parameters of an articulatory model generally ranges from 6
to 9 and the solution space cannot be explored during the inversion. Inversion
methods therefore exploit some explicit or implicit table lookup method to recover
at each time frame the set of articulatory parameters. Explicit table lookup
methods required efficient sampling and representation methods [6] to limit the
table size. Implicit table lookup methods often use neural networks [9, 1] but
cannot guarantee that a uniform acoustic resolution is achieved.

Once inverse solutions have been recovered at each time frame of the speech
signal articulatory trajectories are then built from these local solutions by some
optimal path search algorithm, generally dynamic programming [3]. Other meth-
ods exploit regularization techniques or physical constraints [4] to obtain smooth
trajectories.

The evaluation of an acoustic-to-articulatory inversion procedure comprises
two aspects. The first is the acoustical faithfulness and ensures that inverted
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data are able to reproduce a speech signal as close as possible to the original.
The closeness is generally evaluated by measuring the distance between original
and synthetic formant frequencies.

The second aspect is that of the articulatory faithfulness. Unlike domains
where data can be acquired easily (automatic speech recognition for instance)
acquisition here requires medical imaging techniques which are often expensive
(MRI, X-ray, electromagnetic articulography), hazardous (X-ray), perturb artic-
ulation (noise produced by medical machine, MRI especially), not fast enough to
capture continuous speech (MRI), not precise enough (electromagnetic articulog-
raphy). This explains that very few data are available all the more because some
are required to build or adapt the articulatory model.

Current inversion techniques mostly concern vowels and sequences of vowels
for one speaker. This domains thus necessitates substantial efforts to provide a
general purpose inversion framework.

Given these results perspectives concern the incorporation of additional con-
straints in order to reduce the under-determination of the inverse problem. These
constraints could be static and provided by phonetics to penalize unrealistic vocal
tract shapes given a formant 3-tuple. But they could be dynamic and provided by
computer vision techniques used to track visible articulators, i.e. lips and lower
jaw. The additional knowledge of visible articulators gives rise to two or three
articulatory parameters (jaw position, lip aperture and protrusion) and therefore
considerably reduces the under-determination of the problem. This corresponds
to a multimodal audio-visual approach of the inverse problem.

The second perspective is the use of standard spectral parameters as input
data and the development of a general inversion method for all the classes of
speech sounds. This is a hard problem and requires to be able to derive the
acoustical behavior of the articulatory model from a standard model whatever
the geometrical characteristics of an arbitrary speaker. Furthermore, this im-
plicitly requires the development of a general articulatory model that works for
consonants (voiced or unvoiced) as well as for vowels.
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Chapter 10

Introduction

Of the three media covered in the MUSCLE network: image, sound and text, text
is the easiest media to treat. The features to use in text, those related to meaning,
i.e. words, are easy to manipulate. The main problem with understanding text
derives from the great number of features (modern languages possess hundred of
thousands of words forms) and ambiguity (different words can be used to express
the same meaning). Added to these problems are the number of different lan-
guages that are used. For example, there are 20 languages available on the home
page of the European community. The number of features make the problem of
natural language processing important for understanding.

This section contains three parts concerning the state-of-the-art in Natural
Language Processing for Multimedia Understanding. The first part covers build-
ing language models. Language models are important for both recovering signal
in text and speech processing. Words do not appear in a random order in text.
Understanding this order allows use to separate importance occurrences from
unimportant (from the viewpoint of meaning). Language models help use also
map words and structures between words onto meaning. After this section there
is a section on information retrieval. Information retrieval concerns the problems
involved in reducing the sequential order and variety of text to normalized units
that can be efficiently stored and matched against other texts (queries). It is this
reduction that allows us to explore meaning and operationally understand text,
that is, we can say that this text corresponds to that text. When one of the texts
represents some information need, then providing the relevant text in response
to this need simulates understanding.

The third part of this section covers the use of natural language processing
techniques for processing text associated with images. Considering the use of
text in content based image retrieval (CBIR) systems, this last part describes
the techniques drawn from natural language processing that are currently used
by research teams participating in CBIR competitions such as ImageCLEF and
TRECVID. It is hoped that this description will be useful for understanding
the current state of the art in natural language processing particularly for ap-

175



176 CHAPTER 10. INTRODUCTION

plications involving multiple media (of which one of the media is text). General
recommendations on the issues in natural language processing which still require
attention and research conclude the section.



Chapter 11

Language Modelling

11.1 Introduction

Statistical natural language processing (NLP) attempts to do statistical inference
for the field of natural language by taking some data and making some inferences
about the distribution under which they were generated. The most classic task of
statistical estimation is language modelling where the problem lies in predicting
the next word given the previous words. In general, statistical language modelling
(SLM) aims to estimate the probability distribution of various linguistic units,
such as words, sentences, or even whole documents, in order to encode linguistic
information in a way to be useful to systems which process human language.

Statistical language modelling have been applied in a wide range of natu-
ral language processing tasks including speech or optical character recognition,
handwriting recognition, machine translation, spelling correction, information re-
trieval, and many more.

In more detail, in speech recognition systems, sophisticated statistical models
which included linguistic knowledge were developed in order to transcribe spoken
text into a written form [Jel98, Cla99]. In the field of machine translation, the
proposed statistical models along with tagging and parsing techniques minimized
the amount of ambiguity and variability of both the source and target languages
which result from language-specific phenomena, such as idiomatic expressions,
multiple sense words, word order constraints and others [BCP+90, BF95]. The
benefits from language modelling were also exploited in optical character recogni-
tion where the original text must be recovered from a potentially distorted image,
and in spelling correction where the ”correct” text is sought [Ros94]. In informa-
tion retrieval, a language modelling approach was first proposed in [PC98, Hie98],
and later described in terms of a “noisy channel” model in [BL99]. In the fol-
lowing years, successful applications of the LM approach to a number of retrieval
tasks have also been reported [XWN01, LCC02, SJCO02], and research carried
out by a number of groups has confirmed that the language modelling approach
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is a theoretically attractive and potentially very effective probabilistic framework
for studying information retrieval problems [CL03].

Automatic word categorization is another important field of application in
statistical natural language processing. Research in this area points out that
it is possible to determine the structure of a natural language by examining the
regularities of the statistics of the language [Fin93]. Various clustering algorithms
which partition, in a hierarchical or non-hierarchical way, a set of objects into
groups/clusters according to a predefined objective function have been induced
in order to construct clusters of similar words. This attempt is important since
clustering similar words may alleviate problems that arise in other fields of NLP,
such as speech recognition and information retrieval.

The most commonly used language models are based on the n-gram language
model [Jel98]. However, there are many improvements over this simple model,
including skipping models, higher order n-grams, caching and clustering sentence-
mixture models, all of which are presented in the following sections.

11.2 Language Modelling Techniques/Approaches

Given a sequence of M words W = w1, w2, . . . , wM a language model estimates
the a priori probability P (W) = P (w1, w2, . . . , wM). This probability is typically
broken down into its component probabilities using the Markov chain rule as
follows:

P (W) = P (w1) × P (w2|w1) × · · · × P (wM |w1 . . . wM−1)

or, in a more condensed form

P (W) = P (w1)

M
∏

i=2

P (wi|w1, . . . , wi−1). (11.1)

11.2.1 n-Gram Model

Since, the estimation of such a large set of probabilities from a finite set of
training data is not feasible, the n-gram model is employed where the current
word is predicted based on the preceding n− 1 words expecting that most of the
relevant syntactic information lies in the immediate past. The probability of the
sequence of M words P (W) is then expressed by

P (W) ≈ P (w1)
M
∏

i=2

P (wi|wi−n, . . . , wi−1). (11.2)

The probabilities of the above equation are estimated by means of the relative
frequency approach as follows

P (wi|wi−n, . . . , wi−1) '
c(wi−n, . . . , wi−1, wi)

c(wi−n, . . . , wi−1)
(11.3)
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where c(.) represents the number of occurrences of the corresponding event in the
training corpus.

The number of parameters in n-gram models increases considerably as n in-
creases, resulting in an increase in the size of the model and the data required for
training. Thus, the computation of the a priori probability for large n is difficult
imposing generally low values for n, usually 2 or 3. That is, it is assumed that
the probability of a word depends on only the preceding word (bigram) or the
two previous words (trigram).

For the trigram model which has been shown to work well in practice for most
applications, P (W) is given by:

P (W) ≈ P (w1)P (w2|w1)
M
∏

i=3

P (wi|wi−2, wi−1). (11.4)

The above trigram probability is estimated from their occurrences in the training
corpus in a way similar to (11.3):

P (wi|wi−2wi−1) ≈
c(wi−2wi−1wi)

c(wi−2wi−1)
(11.5)

where c(wi−2wi−1wi) and c(wi−2wi−1) represent the number of occurrences of word
sequences < wi−2wi−1wi > and < wi−2wi−1 > respectively.

Smoothing

It is obvious that the above approximation can be very noisy, since there are
many trigrams that never occur in the training corpus. This problem is known
as the sparse data problem or the zero frequency problem. To illustrate it, if we
consider a vocabulary of size |V | = 20000, then we have |V × V | = 4 × 108 (400
million) possible word bigrams, but the training corpus consists rarely of more
than 10×106 (10 million) words, that is only 2.5% of all bigrams can be observed.
It is obvious that for trigram models the effect will be even more disastrous. To
alleviate this problem various smoothing techniques are applied that take some
probability away from some occurrences and redistribute it to other events. These
techniques are further described below.

i. Additive Smoothing

It is one of the simplest types of smoothing used in practice. In this method
we pretend that each n-gram occurs δ times more than it does, where
0 < δ ≤ 1 and wi

i−n+1 is the sequence of words wi−n+1 . . . wi, i.e.,

padd(wi|w
i−1
i−n+1) =

δ + c(wi
i−n+1)

δ|V | +
∑

w1
c(wi

i−n+1)
. (11.6)

Authors in [GWC90, GWC94] have argued that this method generally per-
forms poorly.
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ii. Good-Turing Estimate

The Good-Turing estimate [Goo53] is central to many smoothing tech-
niques. The Good- Turing estimate states that for any n-gram that occurs
r times, we should pretend that it occurs r∗ times where

r∗ = (r + 1) ·
nr+1

nr
(11.7)

and nr is the number of n-grams that occur exactly r times in the training
data. To convert this count to a probability, we just normalize: For an
n-gram a with r counts, we take

pGT (a) =
r∗

∑∞
r=0 nrr∗

. (11.8)

The Good-Turing estimate cannot be used when nr = 0. It is

generally necessary to “smooth” nr, e.g., to adjust the nr so that they
are all above zero. In practice, the Good-Turing estimate is not used by
itself for n-gram smoothing, because it does not include the combination
of higher-order models with lower-order models necessary for good perfor-
mance. However, it is used as a tool in several smoothing techniques.

iii. Jelinek-Mercer Smoothing

In this method [JFM80], we linearly interpolate n-gram models of high class
and n-gram models of low class as follows:

pinterp(wi|w
i−1
i−n+1) = λwi−1

i−n+1

pML(wi|w
i−1
i−n+1) +

+ (1 − λwi−1

i−n+1
)pinterp(wi|w

i−1
i−n+2). (11.9)

That is, the nth-order smoothed model is defined recursively as a linear
interpolation between the nth-order maximum likelihood model and the
(n − 1)th order smoothed model. To end the recursion, we can take the
smoothed 1st-order model to be the maximum likelihood distribution, or
we can take the smoothed 0th-order model to be the uniform distribu-
tion punif(wi) = 1

|V | . In order to estimate λwi−1

i−n+1
, the data that will be

used should be different from the data used to calculate pML. The optimal
λwi−1

i−n+1

will be different for different histories wi−1
i−n+1. However, training

each parameter λwi−1

i−n+1

for every wi−1
i−n+1 independently is not generally fe-

licitous, so [Che96] suggests that bucketing λwi−1

i−n+1
according to the aver-

age number of counts per nonzero element in a distribution according to
P

wi
c(wi

i−n+1
)

wi:c(wi
i−n+1

)>0
.
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iv. Katz Smoothing

Katz Smoothing [SK87] extends the intuitions of the Good-Turing estimate
by adding the combination of higher-order models with lower-order models.
For the bigram models we have the following equation

ckatz(w
i
i−1) =

{

drr r > 0
α(wi−1)pML(wi) r = 0

(11.10)

with r = c(wi
i−1). That is, all bigrams with a nonzero count r (except from

some bigrams with r > k) are discounted according to a discount ratio dr

which is approximately r∗

r
where r∗ is the discount predicted by the Good-

Turing estimate. The counts subtracted from the nonzero counts are then
distributed among the zero-count bigrams according to the next lower-order
distribution, i.e., the unigram model.

v. Witten-Bell Smoothing

Witten-Bell Smoothing [BCCW90] was developed for the task of text com-
pression, and can be considered to be an instance of Jelinek-Mercer smooth-
ing. In particular, the nth-order smoothed model is defined recursively as a
linear interpolation between the nth-order maximum likelihood model and
the (n − 1)th-order smoothed model

pWB(wi|w
i−1
i−n+1) = λwi−1

i−n+1
pML(wi|w

i−1
i−n+1) + (1 − λwi−1

i−n+1
)pWB(wi|w

i−1
i−n+2).

(11.11)
According to Witten-Belley Smoothing to compute the parameters λwi−1

i−n+1

we will need to use the number of unique words that follow the history
wi−1

i−n+1 which is defined as

N1+(wi−1
i−n+1•) = |{wi : c(wi−1

i−n+1) > 0}|. (11.12)

So the parameters λwi−1

i−n+1

are defined as

1 − λwi−1

i−n+1
=

N1+(wi−1
i−n+1•)

N1+(wi−1
i−n+1•) +

∑

wi
c(wi−1

i−n+1)
. (11.13)

vi. Absolute Discounting

Absolute discounting [NEK94] involves the interpolation of higher and lower
order models. In this method the higher-order distribution is created by
subtracting a fixed discount D ≤ 1 from each nonzero count. So we have

pabs(wi|w
i−1
i−n+1) =

max{c(wi
i−n+1) − D, 0}

∑

wi
c(wi

i−n+1)
+ (1 − λwi−1

i−n+1
)pabs(wi|w

i−1
i−n+2).

(11.14)



182 CHAPTER 11. LANGUAGE MODELLING

vii. Kneser-Ney Smoothing

It is an extension of absolute discounting [KN95] where the lower-order
distribution that one combines with a higher-order distribution is built in a
novel manner. Specifically, for the bigram model the probability of unigram
is not proportional to the number of occurrences of a word, but instead to
the number of different words that it follows. So the probability of unigram
equals to

p(wi) =
N1+(•wi)

N1+(••)
(11.15)

where N1+(•wi) = |{wi−1 : c(wi−1wi) > 0}| is the number of different words
wi−1 that precede wi and N1+(••) =

∑

wi−1
N1+(wi−1•) = |{(wi−1, wi) :

c(wi−1wi) > 0}| =
∑

wi
N1+(•wi). Generalizing to higher-order models, we

have that:

p(wi|w
i−1
i−n+2) =

N1+(•wi
i−n+2)

N1+(•wi−1
i−n+2•)

. (11.16)

viii. Modified Knesser-Ney Smoothing

Modified Knesser-Ney Smoothing [SG96] is an improved version of Knesser-
Ney smoothing, where instead of using a single discount D for all nonzero
counts as in Knesser-Ney Smoothing, we have three different parameters
D1 D2 D3+ that are applied to n-grams with one, two or more counts,
respectively. So we use the above formula

p(wi|w
i−1
i−n+1) =

c(wi
i−n+1) − D(c(wi

i−n+1))
∑

wi
c(wi

i−n+1)
+ γ(wi−1

i−n+1)pKN(wi|w
i−1
i−n+2)

(11.17)
where

D(c) =















D0 c = 0
D1 c = 1
D2 c = 2
D3+ c ≥ 3

(11.18)

and

γ(wi−1
i−n+1) =

D1N1(w
i−1
i−n+1•) + D2N2(w

i−1
i−n+1•) + D3+N3+(wi−1

i−n+1•)
∑

wi
c(wi

i−n+1)
.

(11.19)

11.2.2 Higher-order n-Grams

The trigram assumption in many cases is inefficient and longer contexts are some-
times more helpful. For this reason, trigram models are extended to higher-order
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N -Grams, such as 4-grams and 5-grams. That is, instead of computing proba-
bilities of the form P (wi|wi−2wi−1), probabilities of longer context are estimated,
such that of the 5-gram model, P (wi|wi−4wi−3wi−2wi−1).

Experiments with longer contexts showed little benefit since there are many
cases where no sequence of the form < wi−4wi−3wi−2wi−1wi > is seen in the
training data, forcing to backoff techniques or interpolation with lower-order n-
grams, such as 4-grams, trigrams, bigrams, or even unigrams [Goo04].

In general, the efficiency of these models depends significantly on the smooth-
ing technique employed. For example, the Interpolated Kneser-Ney smoothing
works better with higher-order n-grams than with lower-order ones, but higher-
order n-grams are often impractical due to memory limitations. The tradeoff
between memory and performance typically requires heavy pruning of 4-grams
and 5-grams, reducing the potential improvement from them.

11.2.3 Skipping Models

Skipping models [HAH+93, Ros94, NEK94, MHL+99, SO00] make use of the
observation that when moving to higher-order n-grams, the chance of having
seen the exact context before decreases while the chance of having seen a similar
context, with the most of the words in it, increases.

In a 5-gram context, for instance, there are many subsets of the 5-gram to be
considered, such as P (wi|wi−4wi−3wi−1) or P (wi|wi−4wi−2wi−1). These skipping
5-grams can be interpolated with a normal 5-gram, forming models such as

λP (wi|wi−4wi−3wi−2wi−1)+µP (wi|wi−4wi−3wi1)+(1−λ−µ)P (wi|wi−4wi−2wi−1)
(11.20)

where, as usual, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1 and 0 ≤ (1 − λ − µ) ≤ 1.
In another popular variation of the skipping model all component probabilities

depend on two previous words, like a trigram, but the overall probability is N -
gram-like. An example of such a model is the following

λP (wi|wi−2wi−1) + µP (wi|wi−3wi−1) + (1 − λ − µ)P (wi|wi−3wi−2) (11.21)

where the overall probability is 4-gram like since it depends on wi−3wi−2 and
wi−1.

11.2.4 Caching Models

Caching Models ([KM90, KM92, JMRS91]) depend on the assumption that if a
speaker uses a word, it is likely that he will use the same word again in the near
future. In particular, in a unigram cache, a unigram model from the most recently
spoken words is formed and is then linearly interpolated with a conventional n-
gram.
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In another approach depending on the context a smoothed bigram or tri-
gram formed from the previous words is interpolated with the standard trigram
[Goo04]:

Ptrigram−cache(w|w1 . . . wi−2wi−1) = λ Psmooth(w|wi−2wi−1)

+(1 − λ) Ptricache(w|w1 . . . wi−1) (11.22)

where Ptricache(w|w1 . . . wi−1) is a simple interpolated trigram model, using counts
from the preceding words in the same document.

In another technique conditional caching is used by weighting the trigram
cache differently depending on whether or not the context has been previously
seen or not, which means that the trigram cache Ptricache(w|wi−2wi−1) is interpo-
lated only if at least wi−1 has been seen in the cache [Goo04].

11.2.5 Sentence Mixture Models

Sentence mixture models [IOR94, IO99] depend on the fact that within a corpus,
there may be several different sentence types which can be grouped by topic, or
style, or some other criterion. In these models, each sentence type is modelled
separately. The probability of a sentence is computed once for each sentence type
and then a weighted sum of the probabilities across sentence types is taken. In
general, the sentence type is treated as a hidden variable.

Denoting with sj the condition that the sentence under consideration is a
sentence of type j, the probability of the sentence, given that it is of type j can
be written as

M
∏

i=1

P (wi|wi−2wi−1sj). (11.23)

Taking into consideration all sentence types, a global more efficient model is
obtained. Assuming s0 to be a special context that is always true, then it holds
that P (wi|wi−2wi−1s0) = P (wi|wi−2wi−1). Having S different sentence types
(usually 4 ≤ S ≤ 8) and assuming that σ0, σ1, . . . σS are the sentence interpolation
parameters optimized on held-out data subject to the constraint

∑S
j=0 σj = 1,

the overall probability of a sentence w1 . . . wM is equal to

S
∑

j=0

σj

M
∏

i=1

P (wi|wi−2wi−1sj). (11.24)

Since the probabilities P (wi|wi−2wi−1sj) may suffer from data sparseness, they
are often linearly interpolated with the global model P (wi|wi−2wi−1), using in-
terpolation weights optimized on held-out data.

Sentence mixture models can be used for combining a stochastic context-free
grammar model with a bigram model, resulting in marginally better results than
either model used separately, as proposed in [JWS+95].
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11.2.6 Clustering

This approach attempts to estimate the probability of word sequences by ex-
ploiting the similarities in meaning or syntactic function between words derived
from clustering. Successful assignment of words to classes enable more reasonable
predictions for previously unseen histories by assuming that they are similar to
other seen histories.

Supposing that we partition a vocabulary of V words into L classes using a
function which maps a word wi into its corresponding class Ci where i = 1, . . . , L,
an n-gram class language model is an n-gram model for which it holds for 1 ≤
k ≤ n that

P (wk|w1, . . . , wk−1) = P (wk|Ck)P (Ck|C1 . . . Ck−1). (11.25)

The model described by the above equation has Ln − 1 + V −C independent
parameters which are always fewer than a general N -gram model.

The way to find the best clusters has been a great research topic recently.
Previous research [BCP+90, KN93, Bel97, YS99] has found that there are small
differences between the different developed techniques for finding clusters.

11.3 APPENDIX

11.3.1 Project URLs

Some well known tools for language modelling are given below:

• CMU

– Open Source Speech Software (for example CMU Statistical Language
Modelling toolkit, Hephaestus, Sphinx)

http://www.speech.cs.cmu.edu/

– Statistical Language Modelling Toolkit

http://mi.eng.cam.ac.uk/ prc14/toolkit.html

The CMU-Cambridge Statistical Language Modelling toolkit facili-
tates the construction and testing of statistical language models.

• SRI Speech Technology and Research Laboratory

SRILM - The SRI Language Modelling Toolkit

http://www.speech.sri.com/projects/srilm/

SRILM is a toolkit for building and applying statistical language models
(LMs), primarily for use in speech recognition, statistical tagging and seg-
mentation.
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• Bow: A Toolkit for Statistical Language Modelling, Text Re-
trieval, Classification and Clustering

http://www-2.cs.cmu.edu/ mccallum/bow/

Bow is useful for writing statistical text analysis, language modelling and
information retrieval programs. The current distribution includes the li-
brary, as well as front-ends for document classification (rainbow), document
retrieval (arrow) and document clustering (crossbow).

• Lemur Toolkit for Language Modelling and Information Retrieval

http://www.lemurproject.org/

The Lemur Toolkit is designed to facilitate research in language modelling
and information retrieval, where IR is broadly interpreted to include such
technologies as ad hoc and distributed retrieval, cross-language IR, sum-
marization, filtering, and classification. The toolkit supports indexing of
large-scale text databases, the construction of simple language models for
documents, queries, or subcollections, and the implementation of retrieval
systems based on language models as well as a variety of other retrieval
models.

• Maximum Entropy Modelling

http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

Maximum Entropy Model is a general purpose machine learning framework
that has proved to be highly expressive and powerful in statistical natural
language processing, statistical physics, computer vision and many other
fields
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Chapter 12

Monolingual Information
Retrieval

12.1 Introduction

Information Retrieval (IR) is the field of study that examines how people find
information and how tools (such as search engines and catalogues) can be con-
structed to help people find access information. Studies examine how the or-
ganization of information affects its retrieval, the types of searches people do,
the kinds of search queries people can make effectively, and what determines the
relevance of retrieved information. When information is available in enormous
quantities and not clearly structured, people have difficulty finding relevant in-
formation and understanding important principles embedded in the information.
The World Wide Web (WWW) is one example of Information Overload and its
expansion has generated requirements for more effective access to global and cor-
porate information repositories. These repositories are traditionally text based
but increasingly include multimedia content such as audio (e.g. spoken language
or music), graphics, imagery, and video. In text IR the user’s requirements are
expressed as text keywords and the query results is textual data in the form of
word documents. In monolingual IR query and information to be looked for are
encoded in the same language. The main question is how to retrieve relevant in-
formation from large text or hypertext collections automatically and intelligently.

12.2 Approaches

Information retrieval remains an active field for research for decades and the
rapid and global growth of the Internet has further increased the scientific in-
terest in it. Consequently, the non-English content has also increased, making
multilingual information access a necessity. But while the Internet is no longer
monolingual, multilingual IR implies a good understanding of the issues involved
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in monolingual retrieval. IR, in its most simple form, is the process of gathering
information on a particular subject. In its most basic terms, it is the process
of matching a need to available knowledge. IR is a broad interdisciplinary and
dynamic field that draws on many other disciplines. It stands at the junction of
many established fields, and draws upon cognitive psychology, information archi-
tecture, information design, human information behaviour, linguistics, semiotics,
information science, computer science and librarianship. Studies have typically
approached IR from two major perspectives: from a rational approach which
views IR as a mathematical model, as well as from a cognitive approach which
views IR as an analysis of the process of information gathering done by peo-
ple. In this sense, IR systems not only include search engines, but also human
constructed hierarchies, annotated bibliographies, and other specialized methods
of presenting materials. Nevertheless, Search Engine technology and Automatic
Text IR have been fast-growing fields mainly due to the explosion of textual data
available through the Web that renders inefficient the laborious task of human
indexing. Therefore, statistical methods have seen significant advances in recent
years and have been the dominant approaches for Text IR.

Recently, methods that try to capture more information about each docu-
ment and achieve better performance have been researched and established in IR
systems. These methods form three classes:

1. methods using parsing, syntactic information and Natural Language Pro-
cessing (NLP) in general such as grammatical and morphological analysis
(stoplists, stemming)

2. algebraic methods based on dimensionality reduction techniques that ex-
tent the VSM, such as Generalized Vector Space Model (GVSM) [SZRW86],
Latent Semantic Indexing (LSI) [DDL+90] etc and

3. methods using Bayesian and neural networks and specifically spreading ac-
tivation models.

Considerable advances have been made in recent years in syntactic modelling
of natural language and development of efficient parsers with a broad domain.
The task is to achieve automatic syntactic analysis and develop IR systems based
on NLP. Progress is being made with syntax-directed semantic techniques such as
lexical compositional semantics and with Artificial Intelligence techniques such
as case frame analysis. But deeper semantic interpretation requires extensive
knowledge engineering limiting

the breadth of systems that depend on NLP.
Full text IR is known to focus on the text itself, with semantics being han-

dled in a rudimentary way. In traditional text retrieval the most straightforward
way of locating the documents that contain a certain search term is to search
all documents for the specified string (Full text scanning). Another well-known
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technique is the signature file approach. A fast text retrieval technique that
is followed by many commercial systems is the inversion of the list keywords
that represent the document content. A more sophisticated model than classi-
cal Boolean and Probabilistic models is the Vector Space Model (VSM) where a
page is represented as a bag of keywords instead of a set of keywords as in the
Boolean model. VSM takes frequency information into account. The language in-
dependent ‘bag-of-words’ representations of documents have proved surprisingly
effective for text classification. Common questions regarding term and document
weighting schemes, normalisation, term stemming and common word elimination
have been explored in depth in current bibliography. But the optimal representa-
tion of a text document remains an open research question. Some engines break
documents and queries in phrases or even n-grams instead of words.

Latent Semantic Indexing on the other hand has demonstrated improved per-
formance over the traditional vector space techniques and has been successfully
applied in many test IR systems. LSI, an optimal special case of multidimensional
scaling, is a concept-based automatic indexing method that tries to overcome the
two fundamental problems which plague traditional lexical-matching indexing
schemes: synonymy and polysemy. It models the semantics of the domain in or-
der to suggest additional relevant keywords and to reveal the ”hidden” concepts
of a given corpus while eliminating high order noise. The attractive point of
this method is that it captures the higher order ”latent” structure of word usage
across the documents rather than just surface level word choice. This is done
by modelling the association between terms and documents based on how terms
co-occur across documents.

Recently, Latent Semantic Analysis (LSA) has come under criticism, because
its probabilistic model does not match the observed data. LSA assumes that
words and documents form a joint Gaussian model. However, Gaussian models
can generate negative values, and it is impossible to have a negative number of
words in a document. Thus, a newer alternative is Probabilistic Latent Semantic
Analysis (PLSA), based on a multinomial model, and is reported to give better
results than standard LSA [Hof99]. PLSA is based on a statistical method which
has been called aspect model [HP98]. The aspect model is a latent variable
model for co-occurrence data which associates an unobserved class variable z ∈
Z = {z1, . . . , zK} with each observation. So, for the text we assume that these
two variables, are the occurrence of a word w in a document d (observed), and
the topic(unobserved). PLSA defines a generative model for word/document co-
occurrences. The assumption is that each word wj in a given document dδ is
generated from a latent topic t, i.e. a word is conditionally independent from
its original document given the latent topic it was generated from. The data
generation process can be described as follows:

1. Select a document index δ with probability P(δ)

2. Pick a latent topic t = k with probability P (t = k|dδ)
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Figure 12.1: The data generation process.

3. Generate a word wj with probability P (wjjt = k)

This generative process is summarized by the joint distribution of a word wj,
a latent topic t = k, and a document dδ:

P (wj, t = k, dδ) = P (δ)P (t = k|dδ)P (wj|t = k) (12.1)

and the joint distribution of the observed data:

P (dδ, wj, ) = P (δ)

K
∑

k=1

P (t = k|dδ)P (wj|t = k) (12.2)

So each word in a document is seen as a sample from a mixture model where
mixture components are the multinomial P (wj|t = k), and the mixing propor-
tions are P (t = k|dδ). The PLSA algorithm maximizes the log-likelihood of the
model, by using the EM algorithm[DLR77].

The PLSA model can be used to replace the original document representation
by a representation in a low-dimensional ”latent” space, to perform a TC or IR
task. In [Hof01], the components of the document in the low-dimensional space
are P (t = k|d) ∀k, and for each unseen document or query they are computed
by maximizing the log-likelihood with P (wj|t = k) fixed. This representation
scheme is referred to as PLSI, for Probabilistic Latent Semantic Indexing. It is
obvious that PLSA is not a well-defined generative model of documents, since
there is no direct way to assign probability to an unseen document. However,
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some experiments in [Hof01] report a comparison between LSI and PLSI, on
several corpora. They conclude to a better performance of PLSI in all cases. In
particular PLSI performs well even in the cases where LSI fails completely.

Bayesian Networks can also been applied to Text IR [TC90]. These present
flexible ways of combining term weights and they can generalize previous ap-
proaches such as the Boolean model, the Binary independence model and the
Probabilistic models with weaker assumptions. They also have efficient large-scale
implementation. A disadvantage of these methods is that they need approxima-
tions to avoid intractable inference and the have to estimate all the probabilities
by some means (whether more or less ad hoc).

12.3 Information Retrieval in the Web

The main open issues in IR have to do with the Information access methods and
the Information properties. Information access includes concepts such as informa-
tion transmission and visualisation, categorisation and clustering, topic detection
and tracking, summarisation, query formulation, information acquisition and ex-
traction algorithms and their performance. The Information properties refer to
the type of media data (text or multimedia), its structure (unstructured, semi-
structured - XML, fully structured, hyperlinked - Web, mixture of types) and its
heterogeneity (mono/multi-lingual, heterogeneous structures and services). Open
issues regarding the heterogeneity of Information include the standardization of
non-trivial structures (e.g. Dublin Core) and services (e.g. XQuery text retrieval)
and integration approaches based on uncertainty and vagueness.

The data of today are electronically distributed and are represented in diverse
formats and structures. Nowadays much emphasis is given in IR systems that
have to deal with an excessive amount of unstructured or semi-structured data
where no explicitly well-defined syntax for the documents in the archive exists.
Because of the decentralized nature of its growth, the Web has been widely be-
lieved to lack of structure and organization as a whole. Even if web documents do
share a syntax, there is no well-defined semantics associated with each syntactic
component. An open issue here is the size and coherence of the text repository
from where we seek knowledge. At early years most of the research on informa-
tion retrieval systems is on small well-controlled homogeneous collections such as
collections of scientific papers or news stories on a related topic. Recently, the
demand to find relevant information from large, noisy and non-homogenous cor-
pora has become stronger. World Wide Web can be viewed as a graph, in which
each node represents the page and edges connecting the nodes are the hyperlinks.
The topology of this graph determines Web’s connectivity and consequently how
effectively can we locate information on it. The main goal of web IR is the au-
tomatic acquisition, indexing and ranking of documents in the Web. But, its
enormous size, decentralized and dynamic nature and rapid growth pose a big
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challenge to search related pages for specific topic. Large-scale search engines
struggle to cover the vast amounts of information that has been accumulated in
the Web and maintain the freshness of their index. Furthermore, a very large por-
tion of the web data is inaccessible through common web browsing or automatic
crawling (hidden web). Recent studies [KL01] indicate that the Web contains a
large, strongly connected core in which every page can reach every other by a
path of hyperlinks. This core contains most of the prominent sites on the Web.
The remaining pages can be characterised by their relation to the core. Due to
good amount of resources for research in Web, many researchers are attracted
into web IR area. There are many issues like extraction of the features from the
pages, organizational structure of web, identifying community of pages, crawling
the web, large-scale search engine and its architecture, web structure, personal-
ized web search, page ranking methods, optimising web structure, web indexing
etc. which are required for better web mining.

Information agents are programs that automatically perform customised infor-
mation processing actions to deal with information overload problems. Examples
of agents are the Web Crawlers which programs that traverse the hypertext struc-
ture of the Web automatically, starting from an initial hyper-document or a set
of starting points (seeds) and recursively retrieving all documents referenced by
that document. The recent trends in research of this field is the implementation
of a focused crawler that intelligently avoids irrelevant portions of the web while
visiting most relevant or promising pages early in the crawl process. This can
help developing Vertical Search Engines that offer targeted and domain specific
information to users. The open research problem is to efficiently reorder its crawl
frontier (the queue of unvisited pages) when no content of the unvisited portion
of the web graph is on hand.

What really differentiates hypertext from static text documents is the fact
that the former, besides the text content, contain additional semantics, such as a
document markup structure (Document Object Model - DOM), linking informa-
tion that associates documents, citations and structured header (metadata) that
precedes the relatively unstructured body. Link and social network analysis have
been successfully applied both to academic citation data to identify influential
papers and, more recently, to web hyperlink data to identify authoritative infor-
mation sources. Recent techniques in web IR try to properly extract, exploit and
integrate all these features in order to efficiently process and acquire information
so that distributed, portable, high-performance information processing engines
can be developed. Clearly, outlinking information is available and can be used
to implement well known relevance metrics and ranking algorithms such as HITS
[Kle98] and PageRank [BP98], two of the most prominent algorithms in web IR.
The heuristic underlying both of these approaches is that pages with many inlinks
are more likely to be of high quality than pages with few inlinks, given that the
author of a page will presumably include in it links to pages that s/he believes are
of high quality. Lately, it has been shown that the ranking of the crawl frontier
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can be further improved by using the textual content from links that have been
already visited. Numerous methods that try to combine textual and linking in-
formation for efficient URL ordering exist in the bibliography. Many of these are
modifications, improvements or extensions of either PageRank [RM00], [RD02],
[Hav03] or HITS [CH01]. Chakrabarti et al. [CBD02] and Bharat & Henzinger
[BH98] also propose heuristic methods for differentially weighting links. Other
algorithms such as SALSA [LM00], Spectral Filtering [CDG+99], HyCon [DM03]
and Probabilistic HITS (PHITS) [CC00] are known to improve web search per-
formance and provide quality pages.

Lack of domain knowledge means that user queries will inevitably have less
satisfactory results. There are limitations to the amount of control an IR system
has over their users’ knowledge. Moreover success of query-oriented IR depends
on the size of the query; short queries do not provide sufficient information to the
IR system to distinguish relevant documents from irrelevant ones. But studies
have shown that most of the queries consist of only a few keywords. On large
scale libraries, especially over the Internet, user training is not an option to
tackle with this problem. Thus, a system is needed that supports the user with
additional domain knowledge. The approach taken is to refine, expand and re-
weight the query automatically based on the documents retrieved by the original
query. The common technique for automatic query expansion is to use pseudo-
relevance feedback with top-K retrieved documents per query. There is need
for distinguishing important terms and applying a proper weighting scheme. An
alternative method is to expand each term in the original query with synonyms
or related terms drawn from a generic on-line thesaurus. A third method to
query expansion is based on interactive relevance feedback from the user. The
system first returns a small number of matching documents; the user scans these,
marking each document as “relevant” or “irrelevant”. The system then uses this
feedback from the user to formulate and launch a new query that better matches
what the user is seeking.

Probably the most substantial evidence for automatic indexing has come out
of the SMART Project [SL65]. The SMART system, developed at Cornell, is
the one of the earliest IR systems that (1) use fully automatic term indexing,
(2) perform automatic hierarchical clustering of documents and calculation of
cluster centroids, (3) perform query/document similarity calculations and rank
documents by degree of similarity to the query, (4) represent documents and
queries as weighted term vectors in a term-based vector space, (5) support auto-
matic procedures for query enhancement based on relevance feedback. SMART
has been widely used as a testbed for research into, e.g., improved methods of
weighting and relevance feedback, and as a baseline for comparison with other
IR methods.

The Text Retrieval Conference (TREC) [TRE] began in 1992 and serves as
a major technology-transfer mechanism in the area of text retrieval. It attracts
international participation from more than 100 research groups in retrieval tech-



198 CHAPTER 12. MONOLINGUAL INFORMATION RETRIEVAL

nology, both from industry and academia. Its main goal is to accelerate the
transfer of better text search and retrieval technology into commercial systems.
Participating groups work with large, diverse test collections, submit their results
for a common evaluation, and compare techniques and results.

12.4 Links

1. Information Retrieval: A Survey,
http://www.csee.umbc.edu/cadip/readings/IR.report.120600.book.pdf

2. Text Retrieval Conference (TREC),
http://trec.nist.gov

3. Special Interest Group on Information Retrieval (SIGIR),
http://www.acm.org/sigir

4. Foreign Language Resource Center,
http://flrc.mitre.org

5. CLEVER Project, IBM Almaden Research Center,
http://www.almaden.ibm.com/cs/k53/clever.html

6. Linguistic Information Retrieval (Lirix) - Xerox,
http://www.xrce.xerox.com/programs/lirix

7. Berkeley Digital Library SunSITE,
http://sunsite.berkeley.edu

8. Latent Semantic Indexing Web Site,
http://www.cs.utk.edu/ lsi

9. Reuters Corpus,
http://about.reuters.com/researchandstandards/corpus

10. CMU World Wide Knowledge Base (WebKB) project,
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

11. CMU Text Learning Group,
http://www-2.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www

12. Center for Intelligent Information Retrieval,
http://ciir.cs.umass.edu

13. Apache Jakarta Lucene search engine,
http://jakarta.apache.org/lucene/docs/index.html
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Chapter 13

Natural Language Processing for
Content Based Image Retrieval

13.1 Introduction

This chapter presents the state-of-the-art of employing natural language process-
ing (NLP) for content-based image retrieval. After a presentation of the problem
of content-based image retrieval (CBIR), we examine the current uses of natural
language processing techniques in attacking the text part of this problem. We do
not cover the image processing tasks which are discussed in other parts of this
state-of-the-art. But just as the image processing techniques are concerned with
extracting meaningful signatures from image data, the natural language process-
ing steps discussed here are concerned with extracting normalized signatures from
text. We cover the information needed to understand the textual processing tasks
used within the indexing and retrieval of the recent ImageCLEF and TRECVID
campaigns.

13.2 Content-based image retrieval

Content-Based Image Retrieval (CBIR) refers to the problem of retrieving images
from a repository, based solely on the image content. The notion of CBIR is
usually used in a wider sense, embracing the closely related problems of automatic
image annotation, indexing and browsing.

CBIR emerged in the early 90s as a response to the emergence of large-scale
multimedia collections and the difficulty this posed to the usual manual annota-
tion approach [SWS+00]. Manual image and video annotation not only requires
a vast amount of labour but is also affected by the rich content present in images
and the subjectivity of human perception. Early approaches suggested low-level
features such as colour, colour layout, shape, texture and segmentation as valid
cues for describing visual content in images. These descriptors have limited per-
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formance (in terms of precision and recall) in making explicit the semantics of an
image, a problem known as the semantic gap. It soon became evident that it is
far more difficult for machines to extract meaningful semantics from multimedia
than it is to extract semantics from natural language text.

A wide variety of solutions were proposed in order to bridge this semantic
gap. A first approach acknowledged the difficulty inherent to translating key-
word or speech-based queries to visual based searches, and proposed the use of
visual queries, i.e. using images as query inputs [FSN+95]. Examples of this are
the possibility of searching by example or by sketch or directly by performing
random browsing of the repository. An intermediate approach attempts to ex-
tract semantic information from the user by using a directed visual-based search.
This approach is known as relevance feedback. Most state-of-the-art image re-
trieval systems support one or more of the options mentioned in this paragraph
[JMHA04]. Text is used to bridge the semantic gap in CBIR in three ways:
manual annotation of entire images, exploiting text found attached to an im-
age, automatically assigning keywords to images by training keyword-to-region
functions.

Manual annotation of images is the approach taken by all the large commer-
cial image repositories (e.g. GraphicObsession, Getty, Corbis)1. State-of-the-art
research explores ways to automatically process text found near images to match
the text found in user questions. There is also research in assigning words to
images through image processing techniques[BDF+03] that is not covered in this
chapter we we concentrate on text processing aspects of conten-based image re-
trieval.

13.3 CBIR campaigns involving NLP

There are two major international campaigns involving content-based image and
video retrieval. Both campaigns involve text and natural language processing
components.

ImageCLEF is the cross-language image retrieval track which is run as part
of the Cross Language Evaluation Forum (CLEF) campaign2. The ImageCLEF
retrieval benchmark was established in 2003 with the aim of evaluating image
retrieval from multilingual document collections, containing images accompanied
by texts semantically related to the image (e.g. textual captions or metadata). In
the ImageCLEF campaigns images can then be retrieved using low-level features
based on pixels which form the contents of an image (e.g. using an image as
a query) or using the associated text or a combination of both. Though the
language attached to the images used in ImageCLEF is often in English, the

1www.graphicobsession.com, pro.corbis.com/default.aspx, www.gettyimages.com
2See http://clef.iei.pi.cnr.it/
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retrieval task involves queries that written in many different languages in addition
to English, and cross language retrieval of the images is essential to the campaign.

ImageCLEF provides tasks for both system-centered and user-centered re-
trieval evaluation within two main areas: retrieval of images from photographic
collections and retrieval of images from medical collections. These domains offer
realistic scenarios in which to test the performance of image retrieval systems,
offering different challenges and problems to participating research groups. A ma-
jor goal of ImageCLEF is to investigate the effectiveness of combining text and
image for retrieval and promote the exchange of ideas which may help improve
the performance of future image retrieval systems.

ImageCLEF has already seen participation from both academic and com-
mercial research groups worldwide from communities including: Cross Language
Information Retrieval (CLIR), Content-Based Image Retrieval (CBIR) and user
interaction. More information on past ImageCLEF campaigns can be found on
the University of Sheffield website3.

For further information consult this website and these publications [CMS05,
MGMMC04].

Since 2001, the yearly Text REtrieval Conference (TREC4) sponsored by the
National Institute of Standards and Technology (NIST) has sponsored a video
retrieval track called TRECVID. The main goal of TRECVID is to promote
progress in content-based retrieval from digital video via open, metrics-based
evaluation. Different international research and commercial groups apply to their
video retrieval systems to the same data for the same tasks, and their results are
independently analyzed by the NIST5.

The data used in TRECVID comprises video (often newscasts), the audio
signal, a transcription of the audio or a text produced by automatic speech recog-
nition (donated by Jean-Luc Gauvain of the Spoken Language

Processing Group at LIMSI[GLA02]), as well as some high-level semantic fea-
tures, concepts such as ”Indoor/Outdoor”, ”People”, ”Speech” that is sometimes
attached to the video stream. The search task is as follows: given the search test
collection, a multimedia statement of information need (query), and the common
shot boundary reference for the search test collection, return a ranked list of at
most 1000 common reference shots from the test collection, which best satisfy
the expressed query.

Another CBIR image campaign is being planned for the years 2005-2007 called
ImagEval6. One of the tasks evaluated in ImagEval will involve improving image
search using text captions found around the image.

In all three of these competitions, TRECVID, ImageCLEF and IMAGEVAL,

3http://ir.shef.ac.uk/ImageCLEF2005/
4http://trec.nist.gov
5Online proceeding of the campaign can be found at http://www-

nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html
6See http://www.imageval.org
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though the main goal is to find relevant queries, there is a natural language
processing component involving analyzing a textual query and/or text found
associated with the images to be indexed.

13.4 NLP Mechanisms used in CBIR

In this section we will look at the NLP techniques used to normalize and index
text associate with images. This text can come from an image caption, from
text surrounding an image in a document such as a web page, or from text that
points to an image. In this last case, the text may appear in another document
(for example, another web page) which is hyperlinked to the image.

13.4.1 Finding text in Document structure

When it has been decided to index text that has been associated with an image,
a choice remains as to what text to use. The following types of text in electronic
documents and web documents can be exploited to find a textual representation
of an image:

• the name of the image file, for example carrot.gif

• the HTML title of the page in which the image is found, “Spicy Carrot
Bread”

• a caption associated with the image, for example “Flames shoot off the
front landing gear as the aircraft lands on the runway”

• the HTML ALT field meant to provide alternative or substitute text, pri-
marily for use when the image is not being displayed, for example <IMG
src=”toto.gif” alt=”Fox Terrier puppy”>

• the paragraph in which the image is embedded

• the visual layout block [CHL+04] containing the image

• the entire document in which the image is embedded

• the text found in the anchor of another HTML page pointing to the image,
for example, <A HREF=”foo.jpeg”> giant blue heron</A>.

Valid HTML pages (in which all tags are explicitly balanced) and XML pages
posses a logical structure that can be exploited by the application modules such
as the Document Object Model (DOM) of the W3C: n the DOM specification,
the term ”document” is used in the broad sense - increasingly, XML is being used
as a way of representing many different kinds of information that may be stored
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Danish Dutch English French German Italian Norweg. Portug. Spanish
i de the de der di og de de

af van and la die e det a la

og het to le und il han que que

at een of à den che i o el

til en a et in la er e en

for in in des von a p̊a do y

Figure 13.1: Most frequent short tokens per language derived from the ECI Mul-
tilingual Corpus.

in diverse systems, and much of this would traditionally be seen as data rather
than as documents7.

Such applications such as DOM and SAX8 permit the structured extraction
of logical divisions of pages that contain text [Cha01]. Images found within
the logical segment can be associated with any other text up the DOM tree.
Another approach uses the visual layout of the web page [CHL+04] to associate
the image with text that is found close to the image on the web, even though they
may be separated by the logical structure of the page, for example by belonging
to different HTML tables that appear one under the other when the page is
displayed.

Once some combination of these elements of the document structure is chosen,
we can extract a text that can then be used to index the image, using the NLP
steps described in the following sections.

13.4.2 Language Identification

Before any processing of the text associated with an image is performed, it is
useful to perform language identification on the text. The common approaches
to language identification involve building up statistics from documents whose
languages are known, for example from the ECI Multilingual corpus (see

www.elsnet.org/ecilisting.html) The statistics can involve common words or
common sequences of letters from the training documents [Gre95]. For example,
the word ending -ing is common in English, and the word ending -que is common
in French. Some common words and trigrams for some European languages are
shown in figures 13.1 and 13.2 without their frequency statistics. These word and
character sequence statistics are then used to classify new documents into one of
the recognized languages. The task is considered easy to implement with a high
degree of accuracy [McN05].

In the CLEF’2004 medical image retrieval task9, each image to be retrieved

7See www.w3.org/TR/DOM-Level-2-Core/introduction.html
8Found at saxproject.org
9See ir.shef.ac.uk/ImageCLEF2004



208CHAPTER 13. NATURAL LANGUAGE PROCESSING FOR CONTENT BASED IMAGE RETRIEVAL

Danish Dutch English French German Italian Norweg. Portug. Spanish
er en th de en di et de de

en de he es er to en de de

for de the de de de er os os

et et nd ent der di de do la

ing an ed nt ie co ha que el

fo n d an le ich la an qu la

Figure 13.2: Most frequent trigrams per language derived from the ECI Multi-
lingual Corpus.

was accompanied by textual medical case descriptions in either English or French.
Though a language tag was also connected to the descriptions, some cases had
multilingual description with both languages. In order to process the text cor-
rectly these descriptions had to be isolated using language identification tech-
niques [RS05]

Once the language of the text associated with an image is identified, automat-
ically or manually, the following NLP steps use methods and resources specific
to this language.

13.4.3 Sentence Recognition

Most NLP analysis and parsing algorithms are designed to work on single sen-
tences. For this reason sentence segmentation needs to be performed when the
image text may be more than one sentence long, as is often the case when a para-
graph, long caption, or entire document is associated with the image. The main
problem involved in sentence segmentation is distinguishing sentence-ending pe-
riods from abbreviations-ending periods. Since abbreviations are often domain
dependant, they can be considered as resources that must be updated when new
domains are treated [ZDJ03] though domain-independent methods have been
proposed [Cho00]. For general language, the more resources that are used (lexi-
cons, list of abbreviations) the better the results for recognizing sentence endings
[GT94], with precisions of 95-99% attainable for English text.

13.4.4 Stemming and Stopwords

A commonly used approach to word normalization, used in the absence of more
complete morphological analyzers are stemming routines [Lov68]. The Porter
stemmer [Por80] is a popular algorithm that is used for removing common mor-
phological and inflectional endings from words in English. Version of this stem-
mer in different programming languages can be found on Martin Porter’s site10.
Porter has more recently developed Snowball, a small string processing language

10www.tartarus.org/ martin/PorterStemmer
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designed for creating stemming algorithms. And this has been applied to English,
French, Spanish, Portuguese, German, Dutch, Swedish, Norwegian, Danish, Rus-
sian, and Finnish11.

Stemming usually involves applying lists of suffixes to words iteratively a
fixed number of times, or until a minimum numbers of letters remain as the
root. Examples of endings removed for English by the Porter stemmer are: -ies,
-tion, -ence, -ance, -able, -ic, etc. This algorithm also applies constraints on
the remaining root (such as ending in consonant and containing a vowel), and
deals with some morphological changes (such as double letters, getting->get) and
exceptions (treated in the code). Some stemmers are overly aggressive producing
similar roots for words such as business, busy or organization,organ. But they
are widely used because they are easy to implement and control (i.e., adding
exceptions to the rules can be done by any programmer).

The advantages of stemming are that it reduces a lot of morphological varia-
tion from text to be indexed, and it is rapid to implement and to execute without
requiring extra linguistic resources such as lexicons and grammars.

Disadvantages of stemming are that it cannot handle internal vowel alter-
ations, agglutinating and compounding languages, and that it provides no in-
formation about the structure of text (e.g., the parts-of-speech that a word can
play) which are used in more elaborate NLP such as entity recognition and phrasal
recognition.

At the same level of complexity lies the use of stopword list to further reduce
the text to be indexed. Generally, stopwords are considered to be those words
which bear no or little information content out of context. In English these lists
contain words such as a, an, is, that, which, of, are, with, be, etc. and, maybe
surprisingly, not and no. These lists are generally handmade containing from a
few dozen to a few hundred words. For domain specific applications, there are
techniques for calculating a word strength related to the retrieval effectiveness
of words, and for using words with low strengths as stopwords [WS92]. Stop-
word lists have been made freely available12 for English, French, German, Italian,
Spanish, Portuguese, Finnish, Swedish, Arabic, Russian, Hungarian, Bulgarian,
Romanian, Czech and Polish.

An example of text before and after stemming and stop word removal is shown
in figure 13.3.

The text comes from one of the topics of the TREC text retrieval competi-
tion13 and the results are from the stemming and stopword removal found in a
version of the information retrieval software SMART [SM83].

Such stemming and stopword processing was used for recent entries in the
ImageCLEF and TRECVID competition, such as [AOMN05, CFG+04, DKN05,

11Online versions for these languages can be found at snowball.tartarus.org
12See www.unine.ch/info/clef
13See trec.nist.gov
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TREC QUERY:

To be relevant, a document will discuss a pending antitrust case and

will identify the alleged violation as well as the government entity investi-

gating the case. Identification of the industry and the companies involved

is optional. The antitrust investigation must be a result of a complaint,

NOT as part of a routine review.

STEMMED VERSION:

relev docu discuss pend antitrust case identif alleg vio-

lat govern entit investig case identif industr compan involut

option antitrust investig result complain part routin review

Figure 13.3: A text reduced by first stemming tokens using the Lovins/SMART
stemmer and then removing stop words.

JBJ+05, MGR05], among others, in order to stem the image captions or the
transcription of the video broadcast. The images were then indexed with these
stemmed words.

13.4.5 Part-of-Speech Tagging and Morphological Analy-
sis

A more complicated NLP treatment is normalizing word forms by performing
part-of-speech tagging and morphological analysis depending on this part of
speech. Morphological analysis is concerned with the inflectional, derivational,
and compounding processes in word formation. It corresponds to the segmenta-
tion of a given word into the various smallest meaning units (morphemes) which
form it, e.g. its stem and affixes. A full morphological analysis can also give
morphosyntactic information about the word-form and its stem, e.g. possible
part-of-speech (PoS) and/or inflectional properties (gender, number, case, per-
son, tense, etc.), etc.

A simple approach to morphological analysis consists in using available elec-
tronic lexical databases that associate word-forms and lemmas, together with
inflectional and/or derivational information. This last information is often pro-
vided as a code or model to which operations to produce all possible inflected
forms are attached. For example, the MULTEXT project [IV94] has provided lex-
ical lists of lemmas and inflected word-forms for four languages of the European
Community: French, Italian, Spanish and German14 This approach has however

14See http://www.lpl.univ-aix.fr/projects/multext/ The word-form dictionary for French lists
300,000 forms including proper nouns and compounds. Each character of the linguistic descrip-
tion specifies a value of an attribute. For example, for a verb, there are 7 attributes: PoS, type,
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difficulties to deal with the quasi infinite possibilities of the derivational process,
and offers no (efficient) way to analyze words not present in the database.

Though morphological analysis for a language such as English can be approx-
imated by stemming methods as mentioned above, this is not the case for highly
inflectional languages which require more sophisticated techniques. The most
common approach to performing morphological analysis over other languages is
to describe the morphological formation process using two-level morphology and
then compiling theses rules into efficient finite-state transducers [BK03]. The
primary interest of morphological analysis is to find the correct normalized form
for the words and phrases indexed with images and video. For example, the
word thought can be normalized to different lemmas according to its grammatical
context:

• They thought he would come. → think

• That is a thought to remember. → thought

Proper and efficient morphological analysis is still an unsolved problem for
less studied languages15, such as Arabic, Hungarian, Turkish, Finnish, and East-
ern European languages. Some languages, such as Chinese, pose the additional
problem segmenting running text into word tokens.

A part-of-speech tagger will take a tokenized sentence [Gre99a] as input, assign
one or more possible parts-of-speech to each token, and then usually select one
possible reading of the sentence by assigning the appropriate part of speech (for
example, verb, noun, adjective, adverb) to each word. It references a lexicon or
morphological analyzer to find the parts of speech for known words, and unknown
words are assigned possible parts of speech depending on their composition (for
example, a token made up only of numbers will be assigned a numerical part-of-
speech tag).

For example, given the sentence An experimental study of the wing in a pro-
peller slipstream was made, a number of possible parts-of-speech are first assigned
to each token by a morphological analyzer, or lexicon lookup) and then the most
likely tag is chosen for each word as shown in figure 13.4.

Numerous studies in computational linguistics have dealt with how grammati-
cal tags should be defined, and with accurate and efficient algorithms for choosing
these tags for the words in a text. Problems arise on the linguistic level when we
try to define a set of tags for a language, and then the subsequent rules for choos-
ing among the tags. Computationally, we must resolve problems of exponential

mood or verbal form, tense, person, number, gender. Compounds receive the same linguistic
description as simple words. CELEX http://www.ru.nl/celex/ is another large multilingual
database that includes extensive lexicons of English, Dutch, and German. For each language,
several types of lexicons are available: lemma, word-form, abbreviation and corpus type.

15See isl.ntf.uni-lj.si/SALTMIL/
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BEFORE PART-OF-SPEECH TAGGING
An experimental study of a wing was made

det adj sn prep d sn auxb vt-past

vt vi vt-pastptr

AFTER PART-OF-SPEECH TAGGING
An experimental study of a wing was made

det adj sn prep d sn auxb vt-pastptr

Figure 13.4: A part of speech tagged text, after morphological analysis and
then after tag selection in which Here, det=determiner, sn=singular-noun,
adj=adjective, vt=transitive-verb, auxb=auxiliary(be), vt-past=transitive-
verb(past tense), and vt-pastptr= transitive-verb(past participle)

time and space. The main intuitions for solving the computational problems are
found in most current approaches:

• Implement rules using limited context to define sequences of permissible
parts-of-speech,

• use training techniques to build these succession rules,

• use frequency as a basis for deciding among competing rules,

• use ad hoc rules to treat remaining ambiguity

In order to choose the most likely tag, part-of-speech tagging systems train
language models from large hand-tagged corpora, such as the 100-million word
British National Corpus16 [Lee92], and the Penn TreeBank [MSM94]. Research
in part-of-speech tagging was very active in the 1990s with methods attaining
performance up to 97-99% of accurately tagged text. These methods include
probabilistic approaches such as HMMs [WMS+93], maximum entropy [SB98],
and rule-based techniques such as transformation learning [Bri95]. These re-
sults coincide with human inter-annotator agreement performing the same task
[Bra00].

Both part-of-speech tagging and stopword removal (now using normalized
stopwords or using part-of-speech tags other than nouns, adjectives, verbs) can
be combined in the NLP of text. If we look at the example given above, after
part-of-speech, lemmatisation and stopword removal, we get the following output:

In this more readable version, we see some shortcomings pf this more powerful
treatment, investigate and investigation are two separate indexers for the text,
and an additional step (for example, using a derivational lexicon, or synonym
list, see the section on Semantic Space reduction below) is needed to conflate the
two descriptors. On the other hand, a word like optional would not longer be
conflated with a normalized form of the word options. The principal advantage of

16See www.natcorp.ox.ac.uk
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TREC QUERY:

To be relevant, a document will discuss a pending antitrust case and

will identify the alleged violation as well as the government entity investi-

gating the case. Identification of the industry and the companies involved

is optional. The antitrust investigation must be a result of a complaint,

NOT as part of a routine review.

LEMMATIZED VERSION

relevant document discuss pending antitrust case identify

allege violation government entity investigate case identifi-

cation industry company involve optional antitrust investiga-

tion result complaint part routine review

Figure 13.5: A text reduced by first performing morphological analysis and part-
of-speech tagging and then removing stop words.

part-of-speech tagging, in addition to recognizing variant word forms (including
words with internal variations such as forms of the word tenir in French), is that
the part-of-speech tag permit the recognition of larger more precise structures
such as noun phrases and named entities.

Eric Brill’s tagger for English can be found online 17. The TreeTagger is
a another part-of-speech tagger developed at the Institute for Computational
Linguistics of the University of Stuttgart. Executable code for Sun workstations,
Linux and Windows PCs and Macs as well as parameter files for English, German,
Italian, Spanish, French and old French can be downloaded online18. Part-of-
speech taggers can be tested online19

Part-of-speech tagging of the text associated with images was part of the
approach that teams such as [PLOG05, BHMF04, SNGI05, LCC04] used in Im-
ageCLEF. These teams used noun phrases as indexes, and also used the noun
phrases structure to perform more accurate translation for cross lingual retrieval,
as we discuss below.

13.4.6 Entity Recognition

Entity recognition, also called named entity recognition, means identifying proper
names (e.g. names of People, Organizations, Places), numerals, and abbrevia-

17www.cs.jhu.edu/˜brill/RBT1 14.tar.Z
18At www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
19http://www.comp.lancs.ac.uk/computing/research/ucrel/claws/trial.html,

http://www.lingsoft.fi/cgi-bin/engcg, http://www.xrce.xerox.com/competencies/content-
analysis/demos/english, http://ilk.kub.nl/ zavrel/tagtest.html
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tions from texts. Until 1998, a series of competitions called the Message Under-
standing Conferences (MUC)20 included tasks involving finding named entities.
The MUC competition used the following XML tags to mark up named entities.
ENAMEX for a named person or organization, NUMEX for a numerical quan-
tity, and TIMEX for a time. Each tag could also contain arguments specifying
the type of entity further. For example, a ENAMEX could be a PERSON or an
ORGANIZATION.

Here is an example of marking up a simple sentence with a named entity
recognizer, in which we see two different types of ENAMEX, a PERSON and an
ORGANIZATION:

Mr. Smith bought 1000 shares of ABC Corp. in December, 2005.

<ENAMEX TYPE=”PERSON”>Mr. Smith</ENAMEX> bought
<NUMEX TYPE=”QUANTITY”>1000</NUMEX> shares of <ENAMEX
TYPE=”ORGANIZATION”>ABC Corp.</ENAMEX> in <TIMEX
TYPE=”DATE”>December, 2005</TIMEX>.

The general approach to named entity recognition has been to write a set of
regular expression patterns to capture the different types of entities[Gri97]. Many
systems use a combination of dictionaries and these pattern based rules. For ex-
ample, finding the token Mr. followed by a uppercase-initial word followed by a
lower case word can provoke the insertion of the <ENAMEX TYPE=”PERSON”>
tags around the sequence. The first systems were built using static patterns and
lists of known entities, and these approached finally evolved to more open and
semi-automatic approaches [CV01] For example, some systems use known entities
to examine the context in which these known items are found in order to extract
new identifying patterns from text [CM02].

Named entity recognition is now commonly used in the task of question an-
swering. For content based image retrieval, the following systems have specifically
identified named entities in order to favour the retrieval of images whose captions
contain those entities, or video sequences whose transcriptions contain references
to them [PLOG05, BHMF04, QMS+04].

13.4.7 Phrase Recognition

Once text has been tagged with parts of speech tags, structures beyond simple
words can be recognized. In the last section, we mentioned named entities. In ad-
dition to these, one can extract concepts which are expressed as multiword expres-
sions. In information retrieval, noun phrases are often used as index terms, con-
sidered more precise than individual words[Fag87, ELG+93]. Noun phrases are
often recognized using simple regular expressions [Chu88, KCGS96] or grammars

20see www.itl.nist.gov/iaui/894.02/related projects/muc/proceedings



13.4. NLP MECHANISMS USED IN CBIR 215

over part of speech tagged text. For example, Pereira and Wright [PW97] pro-
vide the following simple grammar that recognizes most English noun phrases. In
this grammar, Det=determiner, Art=article, Adj=adjective, N=common-noun,
P=preposition, PP=prepositional-phrase, Nom=nominal-phrase, NP=noun-phrase,
PN=proper-noun and P=preposition.

NP ⇒ Det Nom | PN
Det ⇒ Art | NP ’s
Nom ⇒ N | Nom PP | Adj Nom
PP ⇒ P NP

This grammar will recognize noun phrases such as:

The recent Security Council meeting
the civil rights of African Americans
Ford’s new offer
the three people on the boat
foreign policy

For information retrieval, simple noun phrase (not including article or prepo-
sitional phrases) are used. Simple phrases are often called “chunks.” Information
retrieval systems [ELG+93, BdCF+03] will often break up a longer noun

phrase into its components and index these components along with the simple
words. These systems often give greater weights to these phrases than to simple
words. Here some examples of the index terms that will be retained from the
noun phrases listed above (the words in the phrases will be either stemmed or
lemmatized as shown in figures 13.3 and 13.5 above):

recent Security Council meeting,
recent Security Council, Security Council meeting,
recent Security, Security Council, Council meeting,
civil rights
African Americans
Ford new offer, Ford new, new offer
tthree people, boat
foreign policy

A noun phrase chunker, based on [RM95] which attempts to insert brackets
marking noun phrases in text (which have been marked with part-of-speech tags
in the same format as the output of Eric Brill’s transformational tagger), can be
downloaded from Mark Greenwood’s site21.

Another noun phrase extractor22 not only extracts phrases but ranks them
according to their discriminating power in a corpus of text. Noun phrases have

21http://www.dcs.shef.ac.uk/ mark/phd/software/chunker.html
22Found at http://www.nzdl.org/Kea/
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been used as index terms by [MFSV+04, PLOG05, BHMF04] for extracting more
precise index terms in ImageCLEF’2004.

Noun phrase recognition is part of shallow parsing23. Of course, deeper pars-
ing methods exist, and this research forms the central concern of computational
linguistics as a field, but no such methods are currently used within the CBIR
community. Interested readers may find a description of deeper natural language
processing at the following sites24

13.4.8 Semantic Space Reduction and Structuring

Information retrieval systems will take the terms extracted by any of the above
means (stemmed words, lemmatized words, named entities, or noun phrases) and
use them to index the text associated with an image. These treatments then
allow a text-based access to images. If a user poses a query using one or more
of the words that index the image, then the image can be found and returned.
But this is not often the case. Furnas et al. [FLGD87] show, consistently across
a broad range of domains, that people will use the same term to describe the
same object with a probability of less than 20%. Subjects were given examples
of common things and asked to give a name for that thing. For example, when
shown images of common objects, a number of subjects responded fruit when
shown pictures of nectarines, of pears, and of raisins.

There are a few ways of circumventing this problem of language variability.
One way is to use a hierarchically structured lexicon, which entails more general
(hypernyms) and more specific relations (hyponyms) between words. Wordnet
(see wordnet.princeton.edu and [MBF+90]) is the most popular such resource in
the research community. See figure 13.6 for snippet from WordNet.

Terminological ontology definition goes from simple lexicons or controlled vo-
cabulary to thesauri, taxonomies with hierarchical relations between terms, or
ontologies with named concepts. Some editing tools or environments have been
developed in order to ease ontology construction (Kaon, OntoEdit, Protg, We-
bOde, etc.). However there are still based on a large part of manual work. Au-
tomation of ontology construction can be reached by a combined use of NLP and
machine learning techniques applied to texts of the concerned domain.

The most commonly used lexical ontologyWordNet was exploited in [CC04] to
resolve the following problem in the TRECVID campaign. As mentioned above,
the task involves finding video sequences that correspond to a user information
need expressed in natural language. The video contains both an automated
speech-to-text transcription and high-level features that have been added to the
video stream. The problem arises in that transcribed speech (usually a reporter

23http://jmlr.csail.mit.edu/papers/special/shallow parsing02.html contains recent papers on
shallow parsing.

24http://www.essex.ac.uk/linguistics/LFG/, http://www.cs.ru.nl/agfl/,
http://cslu.cse.ogi.edu/HLTsurvey/ch3node5.html]SECTION33
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Institution: (hyponyms)

institution, establishment

=> charity

=> religion, faith, church

=> vicariate, vicarship

=> school, educational institution

=> academy, honorary society

=> foundation

=> bank, commercial bank

institution

=> orphanage, orphans’ asylum

=> penal institution

constitution, establishment, formation, initiation, founding,

foundation, institution, origination, setting up, creation,

instauration

=> colonization, settlement

Figure 13.6: WordNet entries under the word institution

talking) often precedes the actual scene of interest. Cheng and Chen [CC04] map
the words found in the transcribed voice stream to the high-level descriptors in
a window of shots around the stream by calculating the shortest path between
each transcribed word and the WordNet node corresponding to the high-level
descriptor. For example, if a transcribed word was bank and the high-level de-
scriptor was institution the distance between the two would be 2 according to the
part of WordNet shown in figure 13.6. When the distance is less than a thresh-
old, the transcribed words are “moved” to sequence labelled with the high level
descriptor.

Aslangodan et al. [ATY+97] used Wordnet to expand the words in a user
query and the words in the metadata associated with images, in a similar way to
calculate a distance between a user’s query words and the words used to index
images in their image retrieval platform called CANVAS.

Since WordNet represented the meaning of each word as a list of other words
(called synsets in WordNet terminology), it can also be used simply as a synonym
list. Martinez et al. [MFSV+04] uses it in this way, optionally expanding a user
keyword by all of its synonyms from its synset.

In addition to using a hierarchical graph to map words onto a semantic space
as in WordNet, there are other techniques for reducing lexical space, some of
which are described in the Language Modelling chapter (q.v.) of this report.

Latent semantic indexing (see lsa.colorado.edu) which maps words into a
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small number of dimension by calculating their co-occurrence with each other
[DDF+90]. In this technique, each word becomes the index of row in a matrix.
the columns of the matrix correspond to documents in which the word is found.
The value of the matrix is the frequency with which the word was found in the
document. This very large, and very sparse matrix is then reduced to three
matrices: two triangular matrices and one diagonal matrix, using singular value
decomposition [Kam98]. When the matrices are reordered so that the diagonal
matrix (a matrix of eigenvalues) is in descending order (from largest singular
value to smallest), and then this diagonal matrix is truncated after 200 to 300
values, the original words and documents are forced into a smaller dimension
spaces (of 200 to 300 dimensions). This reduction method (which preserves a
maximum amount of signal) “forces” words closer to each other, and all words
within a certain radius in this reduced space can be considered as synonyms for
retrieval purposes. For example, using a large corpus of general text up to first
year college level reading, after all the words in 37,651 general language texts,
and then reducing the dimensions of the space from this size (37,651 dimensions)
to 300 dimensions, the words that appear closest to truck, for example, are

distance term
1.00 truck
0.66 trailer
0.65 parked
0.64 pickup
0.59 drove
0.57 trucks
0.56 driver
0.55 highway
0.53 cab
0.52 drive
0.52 driving
0.52 driveway
0.51 seat
0.51 garage
0.49 stopped

One advantage of this space reduction is that each word (and each document)
is now represented by a 300-dimension vector, and that a collection of words (in
a query) can be represented as a sum of vectors. With the documents closest to
this sum being the most similar (and hopefully most relevant).

This latent semantic indexing was used by [AGC+04, KBZ04] over training
documents in order to map stemmed words found in the audio stream into a
smaller space with the visual characteristics and the high level semantic descrip-
tors attached to video frames in TRECVID.

All these techniques (using synonyms lists, distance within a graph structure
such as WordNet, or latent semantic indexing) are used to reduce the space of
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words. Instead of considering each word as a separate dimension and relying on
the user to use query words which exactly match the terms that index the images,
these reductions techniques reduce the dimensions to be considered.

13.5 Cross-Lingual Mechanisms using in CBIR

In the ImageCLEF competitions, and more generally in the real-world collections,
text queries for CBIR can come in many different languages, even though the
images themselves are usually indexed using only one language. In this section,
we will discuss some of the natural language processing approaches to dealing with
this problem of multilinguality. Retrieving a document that has been indexed in
one language via a query in a second language is called Cross Language

Information Retrieval [Gre98a]. Cross language retrieval is more important
in image retrieval than in text retrieval because such systems have a wider appli-
cability, since anyone can understand whether an image responds to their initial
query. When text is retrieved, however, the user needs at least reading knowledge
of the retrieved text in order to judge its relevance to their initial query.

13.5.1 Dictionary Lookup

The simplest, and widest used, approach to cross language retrieval for CBIR is to
take the users’ queries and perform dictionary lookup for each word of the query.
[AOMN05, CMS05] tested such an approach in ImageCLEF. The problems with
such an approach

Machine readable bilingual dictionaries exist for many languages. But, de-
spite their name which indicates that they are readily exploitable by computers,
machine readable dictionaries pose many problems. Their content is geared to-
ward human exploitation and not readily exploitable by a computer. Much of
the information about translations is implicitly included in dictionary entries and
making this information explicit for use by a computer program is no small task.

Finding translations useful for Cross Language Information Retrieval in ma-
chine readable dictionary raises a host of problems. Sample problems are (a)
missing word forms: for example, an entry for electrostatic may be included
in the dictionary, but the word electrostatically may be missing since a human
reader can readily reconstruct one form from the other. Stemming headwords can
mitigate this problem at the expense of increased noise, such as seeing marine
producing translations related to marinated; (b) spelling norms: usually only one
national form appears as a headword in a given dictionary. For example, in a
bilingual dictionary concerning English, the dictionary would have a heading for
only one of the spellings, colour or color; (c) spelling conventions: the use of hy-
phenation varies from dictionary to dictionary as it does from text to text. One
can see fallout, fall out and fall-out in texts, but all variants may not appear in
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the dictionary; (d) coverage [Gre98b]: general language dictionaries contain the
most common words in a language, but rarer technical words are often missing.
For example, the 1-million Brown corpus[FK82] contains the word radiopasteur-
ization nine times, but this word would rarely appear in translation dictionaries;
(e) proper names: country names and personal names often need to be trans-
lated. For example, the Russian president’s name is written Yeltsin in English
and Elstine in French.

Even when the headword is present, finding the translation within the dictio-
nary entry can be difficult. The translation may be buried in a sample use. For
example, the translation of a French word like entamer might be contained in a
phrase enter into a discussion with someone, in which the extra words discussion
and someone appear. Someone may be considered part of the meta-language of
the dictionary and thus eliminated but the word discussion is part of a sample
use and must be identified as extraneous to the translations of the headword.
The specific word that translates the headword may not be identifiable by any
automatic means. Added to this problem, of finding which words correspond
to translations and which are extra information, are other nitty little problems,
such as one we stumbled across: common structural inconsistencies in the SGML
markup of machine-readable dictionaries, which may or may not appear in the
printed version of the dictionary, but which cause automatic processing of defi-
nitions to break down or to produce erroneous entries.

13.6 Corpus-based translation

Another option to using translation dictionaries for finding translations is using
a parallel corpus, i.e., the same text written in different languages. If the corpus
is large enough, then simple statistical techniques[HdK97, ON03] can be used to
produce bilingual term equivalents by comparing which strings co-occur in the
same sentences over the whole corpus.

The most popular tool for determining translation equivalents from parallel
corpus is Giza++25 which has been used to build translation dictionaries from
scratch, for example in the John Hopkins surprise language competitions26. This
tool, based on pioneering work in vocabulary alignment by researchers at IBM
[BCP+90], takes sentence aligned bilingual texts as input and outputs vocabulary
alignment files in which each alignment possesses a probability measures. It can
also be used to align noun phrases if there are recognizable in the input and
output languages (see section above).

Another approach for using corpora to filter relations is to first find noun
phrases in the source language, then generate the possible translations of noun
phrases in the target language by replacing each source word by all possible

25Available for download at www.fjoch.com/GIZA++.html
26See www.clef-campaign.org/workshop2003/presentations/tides-sl03.ppt
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translations, and generate candidate target language noun phrases. For example,
suppose our source language is Spanish and our target language is English. Now,
suppose that we have the Spanish noun phrase agua corriente in our query to
translate. Now, also suppose that our Spanish-to-English dictionary gives the
following translations:

agua ⇒ water
corriente ⇒ common

⇒ draft
⇒ draught
⇒ flowing
⇒ going
⇒ ordinary
⇒ power
⇒ running
⇒ stream
⇒ usual

Then we can the following translation and only retain the English noun
phrases that have been found in the English side of the database. It has been
found that taking the most frequently attested phrase in a large corpus (or on
the Web) gives the correct translation of the phrase is the great majority of cases
[Gre99b].

agua-corriente common-water
agua-corriente current-water
agua-corriente draft-water
agua-corriente draught-water
agua-corriente flowing-water
agua-corriente going-water
agua-corriente ordinary-water
agua-corriente power-water
agua-corriente running-water
agua-corriente stream-water
agua-corriente usual-water

This simple generation and filtering of translation has proven to be very suc-
cessful [QGE02] in cross language retrieval, eliminating much of the noise that
comes from adding in all the translations available in a bilingual dictionary. It
was used in ImageCLEF by the LIC2M [BHMF04].
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13.6.1 Machine Translation

The most common solution to the cross language retrieval problem is to use online
machine translations systems 27 to translate the input query into the language of
the image index.

English Dogs rounding up sheep
Italian Dogs that assemble sheep
German Dogs with sheep hats
Dutch Dogs which sheep
French Dogs gathering of the preois
Spanish Dogs urging on ewes
Chinese Catches up with the sheep the dog

This solution is not optimal [Gre98a] since only one lexical item is chosen for
each input term, so the correct translation may be missing, whereas using the
dictionary lookup or parallel corpus techniques, described above, more than one
alternative translation may be kept. In addition, technical terms are often missing
from general translation lexicons, Nonetheless, this technique is easy to implement
and has been used to address the cross language retrieval problem in ImageCLEF
by many CBIR researchers[SNGI05, PLOG05, MFSV+04, Clo05, VTG03].

Some examples of the use of machine translations on non-English versions
of the ImageCLEF query ”dogs rounding up sheep” back into English were the
following:

13.6.2 Conclusion

In this section, we have discussed methods for associating text with images, and
shown then how this text is processed by researchers involved in content based
image retrieval. We have talked about where the text can be found in relation
to the image, and then we examined the natural language processing steps that
have been employed in order to treat this text by content-based image retrieval
researchers: language identification, stemming, morphological analysis, part-of-
speech tagging, entity recognition, noun phrases extraction, semantic space re-
duction, and finally cross language retrieval using various methods. The more
in-depth processing that natural language processing can provide: deep parsing,
anaphora resolution, word sense disambiguation, etc. have not been employed
by CBIR researchers mainly due to the lack of availability of robust versions of
these tools.

27babelfish.altavista.com
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Chapter 14

Recommendations

There are three main problems that still need to be resolved in natural lan-
guage processing for multimedia understanding. One problem is easy to state
but requires much work: extending natural language tools to all the European
languages. Most tools have been made and tuned for English, and to a lesser
extent for Western European languages such as French, Spanish, German and
Italian. Despite efforts such as MULTEXT-East1 for developing at least some
resources for some Eastern European languages, most other languages are “poor
cousins” with respect to the tools and resources available to process them. These
tools are necessary in order to recover and normalize the features that can be
used for computer understanding of text.

A second problem lies in improving the features that can be used by ma-
chine learning programs over text. These features are currently normalized (or
stemmed) words as seen above. Such features can be improved in two directions.
First, using more elaborate and precise text structures. We saw above that some
of these structures are currently being used, namely named entities and simple
noun phrases, but beyond these simple to recognize structures there are syntac-
tic structures (agent-action-object) structures that can provide better clues for
classifying and retrieving information from text. As mentioned in the last para-
graph, tools for recognizing these elaborate structures need also to be extended
to languages other than English. The second research axis involving features text
concerns creating reduced and manipulable feature spaces that are appropriate to
specific domains (just as WordNet is a structured version of English2 for general
applications). This involves understanding the way words and phrases and com-
binations of words (for example, the agent-action-object structures) are related
to each other: which are synonymous for the domain, which are more specific,
which are more general. Work on automatically structuring this lexical space, for
example into ontologies, still needs to be pursued. The interdependence between

1http://nl.ijs.si/ME
2See also www.illc.uva.nl/EuroWordNet/ for some work on other language version of Word-

Net.
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text features has to be taken into account in machine learning applications which
up until now tend to use a “bag of words” approach to text.

The third problem in natural language processing is largely unexplored but
nonetheless at the heart of the MUSCLE consortium concern. What is lacking
from the current research approaches is a rethinking of the relation between the
lexicon and what is visible in an image. We propose that research be performed
for extracting visual aspects of items, from text. For example, there are no
lexical resources available that tell us what part of the lexicons corresponds to
objects in the image and what part corresponds to abstract objects. Though
WordNet has made a first attempt on marking what are objects (one of their
nodes is labelled “object” with the additional label of “can cast a shadow”)
but underneath this node, we find many things which are not physical objects
(e.g.“tree of knowledge”) and outside this branch we find many things which can
be pictured in an image (e.g. “snow” and “sea”). We need to rethink WordNet
for CBIR purposes. There are other physical aspects of objects which might be
useful for CBIR and which could be found using NLP. For example, it might
be possible to find the common colour of things through text processing. For
example, if you search for associations of colours and objects using the Web,
you find that the most common colours associated (i.e. found in the same noun
phrase) with apple are green, red and golden. It might be possible to associate
colours to all objects using only text processing and statistics. Other visual
aspects such as texture or shape might also be found through NLP. In addition,
for pure image processing, it might be useful to know what objects appear in
what settings. If image processing is able to recognize a background as being a
sky, text processing should be able to provide some clues as to what appears in
a sky, thus reducing the number of possibilities to be considered during object
recognition. In other words, NLP might be useful not only in dealing with textual
queries on image collections as described here in this chapter, but it might also
be useful for bringing information to pure image processing tasks.



Conclusion

One of the major identified lock by the multimedia content retrieval community
is the semantic gap when differences arise between the targeted content and the
retrieval result. To fulfil the overall objectives of Muscle we need to address this
problem for the future steps in WP5. This will assume that in the WP5, we will
spend less effort on basic image analysis techniques that could not have direct
exploitation for information retrieval.

We will focus on content description methods for each single modality. Our
primer goal will be to provide, from low-level content description methods, the
appropriate input to reduce the semantic gap. This assumes to start from the
effort on fidelity of content descriptors to object, or more generally ”single modal-
ity event”, detection and recognition methods. This includes face/human class
objects since this class provides highly semantic information when available. Im-
portant efforts will be spent specially in the near future on saliency detection,
description and retrieval for each modality. As noticed all over this report, ma-
chine learning techniques and content-description methods are continously em-
bedded together. Therefore, collaboration with WP8 (as well as WP6) is one of
the strong future issues.
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