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Introduction

This State of the Art report fulfills the requirements of Deliverable 7.1 of the EU-funded Net-
work of Excellence MUSCLE.

It is part of the programme of work for Workpackage 7 “Computation Intensive Methods”.
There are 2 objectives of the report:

1. To provide some background information and references for the major areas of research
in computational methods for multimedia data;

2. To describe the current state of activities of those members of MUSCLE that are conduct-
ing research that uses or develops computation intensive methods.

To this end, the report is divided into two chapters. In the first chapter you will find descrip-
tions of the major areas of research. These are a mixture of lists of references and articles by
MUSCLE members. The second chapter describes current work by members of the MUSCLE
consortium. This chapter is also a mixture of articles and references to work. The work de-
scribed in this chapter is continuing and will form part of the research efforts of the MUSCLE
consortium over the next 42 months.

Simon Wilson
Trinity College Dublin, August 2004.
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Chapter 1

Current State of the Art in Computational
Methods for Multimedia Understanding

1.1 Markov Chain Monte Carlo

1.1.1 Introduction to MCMC

Author: Simon Wilson, Trinity College Dublin Ireland

It is 20 years since the first application of Markov chain Monte Carlo (MCMC) methods
to multimedia data [41]. Since then they have seen wide application to problems in audio,
video and image analysis; indeed, it is probably reasonable to assert that MCMC methods have
been successfully used in all principal areas of multimedia data analysis. Combined with the
large increases in computing power over the last 20 years, they have revolutionised what can be
achieved in many areas.

The next section of this chapter is a more technical description of the main ideas of MCMC.
For those who are looking for introductory texts to the field, a good place to start is [14]. This
paper is aimed at a statistical audience. There is a very nice review of Monte Carlo methods,
including MCMC, by [82], available from the author’s webpage.

There are several books on MCMC methods. An early book of applications, including
some in image processing, is [42]. In [106], the main methods of MCMC are described from
a more theorectical perspective. Applying MCMC to problems in image analysis is the subject
of [115]. For those using MCMC with Bayesian methods, [38] is full of examples (although
none in multimedia data unfortunately) and good advice on the practicalities of implementing
MCMC methods. The latter book describes several diagnostics for checking that the MCMC
method has converged and is mixing well, both very important aspects of any MCMC algorithm
; [19] is a review of the principal ideas. Another important idea is the “reversible jump” sampler,
for use in problems where the dimensionality of the distribution being explored is unknown; see
[47].

Finally, there is the “exact” MCMC approach of [92]. While this in principle solves all the
problems associated with convergence and mixing, it has proved difficult to apply in all but a
few selected situations. There are not yet any applications of it to multimedia data.
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1.1.2 Stochastic Algorithms

Author: Michal Haindl, UTIA Czech Republic

Most multidimensional probability densities (e.g., random fields) parameter estimates and their
realization cannot be directly computed except for few treatable cases since the underlying space
is too large. Therefore, static Monte Carlo methods have to be replaced by dynamic simulation
of feasible Markov chains with required limit distribution (Markov Chain Monte Carlo meth-
ods - MCMC). The MCMC methods provide direct approximations of required probabilities
rather than the usual indirect (e.g., asymptotic distribution fitting) alternatives. The principle
of MCMC is to construct such an ergodic transition kernel of a Markov chain ˜p(Yt →Yt+1),
so that ˜p(Yt →Yt+1) is the probability associated with a transition fromYt →Yt+1 and has
the required limit distributionp(Y). If the transition probability does not depend on the stept
then the corresponding Markov chain is called homogeneous otherwise it is the inhomogeneous
Markov chain. Then for single chain realizationsY1,Y2, . . . ,Yn the ergodic theorem implies
[12] that for any seedY1, the random sequence

f̄n =
1
n

n

∑
i=1

f (Yi)

converges almost surely toE{ f}

E{ f}= ∑
Y

f (Y)p(Y) (1.1)

as n→ ∞. Hence the mean value (1.1) is approximated by the empirical (ergodic) averagef̄n
obtained for sufficiently long run of the chainY1,Y2, . . . ,Yn. The MCMC methods use the fact
that

p(YA |Y(A)) ∝ p(Y) A⊂ I

where(A) denotes set complement ofA. Hence if two realizationsY,Ý fulfil Y(A) = Ý(A) then

p(ÝA |Ý(A))
p(YA |Y(A))

=
p(Ý)
p(Y)

. (1.2)

Using (1.2) we do not need to know the normalization constantZ which is usually intractable
analytically as well as numerically. Another considerable simplification is usually possible if
the involved densities are of the product type.

Stochastic algorithms use dynamic Monte Carlo techniques to generate required random field
(RF) realizations (equilibrium states). These algorithms can be also used for generating the
ground states of RF, i.e.,

Ωmin = {Ỹ : Q(Ỹ) = min
Y

Q(Y)} (1.3)

or simply for finding a minimum of any functionQ(Y) if we introduce an additional parameter
to the Gibbs random field (GRF), called temperature. This parameter is decreased according
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to a special schedule (simulated annealing). Similarly it is possible to solve the constraint
optimization problem:

Ω̃min = {Ỹ : Q(Ỹ) = min
Y,B(Y)=b

Q(Y)} , (1.4)

if the energy function is redefined as

Q̃(Y) =
Q(y)+λB(Y)

T

and the normalization constant is

ZT = ∑
Y∈Ω

exp{−Q̃(Y)}

then

lim
λ→∞,T→0

p(Y; T,λ) = p(Yg) .

In contrast to deterministic algorithms, stochastic algorithms permit changes that can decrease
the posterior distribution (objective function) as well and so to avoid being stick in a local max-
ima. Hence these algorithms theoretically guarantee convergence towards the global optimum
of a highly non-linear non-convex objective function irrespectively of an initial system state.
The computational complexity of stochastic algorithms depends on spatial and measurements
quantization (e.g., spectral resolution). The computational complexity increases for a fixed
index set sizen= card{I} approximately linearly with the number of quantization levels. Ge-
man and others [39] proposed an approximation to restrict the configuration space by ignoring
quantization levels which do not occur inP(Yr |Ys ∀s∈ Ir), where Ir is the first order hierarchi-
cal neighbourhood. This approximation decreases number of operations necessary to generate
a sample in order of magnitude [39].

The MCMC algorithms can be used to simulate complicated multivariate distributions. Suppose
we need to simulate a multivariate continuous distributionp(Y) ∝ exp{−Q(Y)} and we assume
the existence the vector of partial derivatives∇Q(Y). Then the stochastic differential equation
dYt =−∇Q(Yt)dt +

√
2dwt , where wt is standardn−dimensional Brownian motion defines

a continuous-time Langevin diffusion which has the required stationary distributionp(Y) [12].
The MCMC replacement is

Ý ∼N (Yt−1−a∇Q(Yt−1),2aIn) ,

wherea > 0 is a small constant.

The general formulation for the sampling task can include observed dataX, unobserved dataY,
a vector of parametersθ and hyperparametersφ, respectively. The posterior density is then

p(φ,θ,Y |X) ∝ p(X,Y |θ) p(θ |φ) p(φ)

with the following corresponding conditionals
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p(θr |θ(r),φ,Y,X) ∝ p(X,Y |θ) p(θr |θ(r),φ)
p(φr |θ,φ(r),Y,X) ∝ p(θ |φ) p(φr |φ(r))
p(Yr |θ,φ,Y(r),X) ∝ p(X,Y |θ) .

The convergence of stochastic algorithms makes only weak demands on the manner in which
pixels are visited. Any asynchronous method of updating deterministic or stochastic is accept-
able, provided that each pixel is visited infinitely often. The procedure may even be synchronous
to the extent that no two pixels which are neighbours should be simultaneously updated. A
complete parallelization of a single site updating is wrong because the obtained sequence of
configurations converges in distribution to a different distribution than the required one (usually
even not having a Gibbs representation). If the joint probabilityp(Y) is highly multimodal a
single-site updating algorithm will have very slow convergence. A possible remedy can be to
run the algorithm several times from different starting points and to combine these results. How-
ever such a coherent combination is a problem itself. Another possibility is the introduction of
auxiliary variables to design simple Markov chains that can make substantial changes to many
components at once. In these methods (see for example [11]) a variableY is augmented by one
or more additional variablesX and a Markov chain is constructed that alternates between two
types of transitions:X is drawn from p(X|Y) and Ý is generated givenX, Y in such a way
that the detailed balance forp(Y|X) is preserved. Difficult question is to decide if a stochastic
algorithm run was sufficiently long or if it is more efficient to run one long single-chain run or to
combine results from several independent chains running in parallel. Useful bounds on rates of
convergence are not known in general. For Gaussian distributions are available results on rela-
tionship between the target distribution correlation structure and the Gibbs sampler convergence
rate [5].

The following stochastic algorithms are particular instances of a class of dynamic systems
known also as stochastic cellular automata (SCA) and technically they are regular Markov
chains whose invariant distribution is the Gibbs measure of the corresponding MRF. Their
asymptotic behaviour was intensively studied and is relatively well understood. Their transient
dynamic behaviour (convergence rate), however, is much less understood.

1.1.2.1 Metropolis Algorithm

Given the stateYt−1 of a MRF, another random configuratiońY is chosen [87] such that
Ý(A) = Yt−1

(A) , ÝA 6= Yt−1
A where A⊂ I . The transition kernel ˜p(Yt−1

A → ÝA;Yt−1
(A) ) is chosen to

be symmetric inYt−1
A , ÝA. The ratio

α =
p(Ý)

p(Yt−1)

is computed. If α > 1, or Q(Ý) < Q(Yt−1) then Yt = Ý, otherwise the transition is made
with probability α. A variable ξ is selected from a standardized uniform distribution, ifξ≤ α
thenYt = Ý, otherwiseYt =Yt−1. Because a less favourable configuration is not automatically
rejected the algorithm can escape from local minima.
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A modification of the algorithm is the Exchange algorithm [20], whereÝ is obtained from
Yt−1 by exchanging values of two randomly chosen pixels. The exchange algorithm keeps the
overall distribution (intensity histogram) of RF values fixed. The disadvantage of this method
is its sensitivity to initial configuration [18]. In the "single-flip" [40] algorithm, Ý is obtained
from Yt by changing the value of one randomly chosen pixel(card{A} = 1). The exchange
algorithm similarly as the "single-flip" algorithm does the change with probability

α
1+α

.

Some other algorithms of the Metropolis-Hastings type can be found in [102] and the conver-
gence theorems in [114].

1.1.2.2 Gibbs Sampler

The Gibbs sampler [40] (also known as stochastic relaxation or the heath bath method) gen-
erates realizations from a given MRF using a relaxation technique similar to the Metropolis
algorithm. The Gibbs sampler is a special case of the simulated annealing (1.1.2.3) with a fixed
temperature. The sampler is also the Metropolis algorithm with zero rejection probability. The
transition kernel ˜p(Yt−1

A → ÝA;Yt−1
(A) ) is independent ofYt−1

A . Gibbs samplers usually require

univariate updates(card(A) = 1. The stationary configurationY0 is arbitrary. By repeatedly
visiting all sites (for example by raster scanning) we always replace one pixel with a value
generated from the local characteristic of Gibbs distribution:

p(Yt) = p(Yt
r |Yt−1

s ∀s 6= r) p(Yt−1
s ∀s 6= r) , (1.5)

where

p(Yt
r |Yt−1

s ∀s 6= r) =
exp{−Qt

r(Y)}
Z̃

. (1.6)

Convergence of the algorithm (usually slower than the Metropolis algorithm convergence rate)
is assured by the relaxation theorem [40]. The Gibbs sampler can be used to find a minimal
energy state as stated in the annealing theorem [40].

For highly correlated components of a RF the Gibbs sampler convergence can be very slow. If
however such a correlated variables are blocked together and drawn from a multivariate condi-
tional distribution the convergence speed can be significantly improved.

1.1.2.3 Simulated Annealing

Simulated annealing iteratively samples from conditional distribution of each variable, while
a control parameter, the temperature, is varied according a special schedule from high to low
values. At low temperature values the algorithm samples from the most probable configurations.
Let us introduce a new parameterT (temperature) into a GRF

pT(Y) =
1

ZT
exp{− 1

T
Q(Y)} . (1.7)

11



We get so called Boltzmann distribution, frequently used in statistical physics. It is easy to show
that

lim
T→∞

pT(Y) =
1
|Ω|

∀Y ∈Ω (1.8)

whereΩ is the set of all possible configurations ofY, and if

Ωmin = {Yg ∈Ω : Q(Yg)≤Q(Y) ∀Y ∈Ω}

then

lim
T→0+

pT(Y) =
{ 1

|Ωmin| for Y ∈Ωmin

0 otherwise
. (1.9)

Hence the probability mass function of GRF becomes uniform over all states asT → ∞ and
uniform over all global minima(Yg) of its energy function asT → 0+, respectively. Global
minima are also called the ground states ofY.

The simulated annealing algorithm is as follows:

1. Select an initial temperatureT0 and randomly choseY0.

2. At step k perturb Yk, i.e., Yk+1 = Yk +4Y and compute4Q = Q(Yk+1)−Q(Yk) .

3. If 4Q < 0, accept the change. If4Q > 0, accept the change only with probability
p(4Y) = exp{−4Q

Tk
} .

4. If there is a considerable drop in energy, or enough iterations, lower the temperature
Ti = Ti−1−4T .

5. If energy becomes stable and temperature is very low, stop; otherwise go to the step 2.

The theorems [61, 17] state conditions for the simulated annealing algorithm convergence.

The simulated annealing differs from the Metropolis algorithm or the Gibbs sampler in using
samples at timek generated fromPTk(Y) instead from P(Y) (Tk = 1 ∀k). The initial state
to the simulated annealing is often of critical importance [13]. If there is not available any
better initial state this state is assigned at random. Instead of visiting all sites as in the standard
simulated annealing, the modified simulated annealing [121] visits only so called unstable sites,
i.e., sites with the criterion function value smaller than some threshold(Y∗r < T). The second
option for a siter to become stable is ifYr = Ys ∀s∈ Ir , i.e., if the siter has the same value as
all sites in its neighbourhoodIr . If the number of unstable sites decreases at each iteration, the
amount of computation for the simulated annealing process can be significantly reduced [121].

Simulated annealing may converge very slowly, hence several modifications of the simulated
annealing were developed to get faster algorithms. Instead of standard coolingTk = C

lnk, it is
possible to use faster coolingTk = k or Tk = αk (α = 1.01, α = 1.05) however the conver-
gence is not guaranteed any more. Alternatively it is possible to use fast visiting schemes (e.g.,
chequer-board) updating sets of sites or synchronous updating.
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There is also a deterministic analogy to the simulated annealing called continuation methods
[88]. These methods also involves the variation of a control parameter during the iterations
which generates a sequence of cost functions. The original cost function is increasingly, closely
approximated and is asymptotically reached at the final values of the control parameter.

The simulated annealing algorithm can be implemented also in the parallel version for its con-
vergence theorem see reference [93].

1.1.3 Deterministic Algorithms

The stochastic algorithms guarantee to reach an optimal solution. Unfortunately while their
asymptotic properties are specified in corresponding theorems, very little is known about their
convergence rate and to reach the global optimum is usually expensive. Deterministic algo-
rithms like the Highest Confidence First (HCF) [93], Maximum Marginal Probability method
(MMP) [28, 83], the Lagrange-Hopfield method (LH) [76], or the Iterated Conditional Modes
algorithm (ICM) [10] on the other hand are efficient but they stop at a local optimum. These
algorithms can be used as a computationally inexpensive approximation of the stochastic algo-
rithms.

1.1.4 URLs

www.mrc-bsu.cam.ac.uk/bugs/

1.2 Particle Filtering

Authors: Ercan Kuruoglu, ISTI, CNR, Pisa, Italy, and introduction by Simon Wilson, Trinity
College Dublin Ireland

Particle filtering is particularly suited to multimedia applications where the data arrive as a
sequence i.e. audio and video. It is closely related to the idea of importance sampling. Good
reference papers for its application to Bayesian inference with multimedia data are [27] and
[26]. These papers contain extensive bibliographies. A recent tutorial on the approach for
tracking is [6]; this paper also contains an extensive list of references. The following are also
references for the use of particle filtering in multimedia applications [44, 45, 111, 112, 34, 110,
43].

The groups within MUSCLE that are conducting research with particle filters are: Bilkent
University (Turkey), ISTI-CNIR (Italy) and the University of Cambridge (UK). They are being
applied to problems in source separation and object tracking.

1.2.1 The State Space Formulation

Filtering is the problem of estimating the hidden variables (calledstates) of a system, as a set
of observations becomes available on-line: the introduction of astate spaceformulation is a
fundamental step, because it allows to deal with non-stationarity, as it will be shown later.
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In many real-world data analysis applications, prior knowledge about the unknown quanti-
ties to be estimated is available, and this information can be exploited to formulate Bayesian
models: prior distributions for the unknown quantities and likelihood functions that relate these
quantities to the observations. Then, all inference on the unknown quantities is based on the
posterior distribution obtained from Bayes’ theorem.

It is possible to express the model in terms of astate equationand anobservation equation:

αt = ft(αt−1,vt);

yt = ht(αt ,wt).

The state equation evaluates the state sequence:αt is the state at current stept, ft is a possibly
nonlinear function,αt−1 is the state at the previous step, andvt is called dynamic noise process.
The observation equation is characterized by a nonlinear functionht , and both the current state
αt and the observation noise realisationwt at time stept are taken into account to generate the
observationyt .

The Kalman filter(KF) is an extension of the Wiener filter, and it was presented by R. E.
Kalman in 1961 [30]: this filter derives an exact analytical expression to compute the evolving
sequence of the posterior distributions, when the data are modelled by a linear Gaussian state-
space model. The obtained posterior density at every time step is Gaussian, hence parametrized
by a mean and a covariance.

The best known algorithm that allows a non-Gaussian and nonlinear model is theExtended
Kalman filter(EKF) [21], based upon the principle of linearising the measurements and evo-
lution models using Taylor series expansions. Unfortunately, this procedure may lead to poor
representations of both the non-linear functions and the probability distributions of interest, so
the filter can diverge.

The more recentUnscented Kalman Filter(UKF) is founded on the intuition that it is better
to approximate a Gaussian distribution, than approximating arbitrary non-linear functions [72].
Also this approach has, however, a limitation, that is it does not apply to general non-Gaussian
distributions.

A new technique to solve the general filtering problem is introduced in this chapter: this
approach, namedparticle filtering, uses sequential Monte Carlo methods, and it was introduced
for the first time in automatic control by Handschin and Mayne [29] at the end of the 60’s, but it
has been overlooked until the early 90’s because of the low computational power available. The
renewed interest in these methods brought to success in tracking problems (see [97] for a general
review), and very recently it has been applied also to perform source separation ([1], [15], [81]).
Sequential Monte-Carlo particle filters are able to solve time or space varying mixing problems,
and allow for a complete representation of the posterior distribution of the states, so that any
statistical estimates (mean, variance, and so on...) can be computed.

1.2.2 The Bayesian Approach

This section is a brief overview of the Bayesian approach, which is the basis of Particle Filtering.
Given a set of observationsy and the set of unknown sourcesα, we consider theposterior
distribution

p(α|y) =
p(y|α)p(α)

p(y)

14



where
p(y) =

∫
p(y|α)p(α)dα

and wherep(y|α) denotes thelikelihood and p(α) denotes theprior distribution. In order to
keep the the same notation used in literature [3], we useαt to denote both the random variable
and its realisation. Consequently, we express continuous probability distributions usingp(dαt)
instead of Pr(αt ∈ dαt), and discrete distributions usingp(αt) instead of Pr(αt = αt).

Given the posterior distribution, optimum estimators can be obtained, most notably theMin-
imum Mean Squared Error(MMSE) and theMaximum A Posteriori(MAP) estimates ofα:

α̂MMSE =
∫

αp(α|y)dα;

α̂MAP = argmax
α

p(α|y).

The aforementioned filters (KF, EKF, UKF) rely on various assumptions to ensure mathemat-
ical tractability. Unfortunately, real data sets are often very complex, typically high dimen-
sional, nonlinear, nonstationary and non-Gaussian: except in some simple cases, the integration
(MMSE) or the optimisation (MAP) of the posterior are not analitically tractable. Moreover,
classical optimisation methods need good initialisations and are sensitive to local minima.

On-line simulation basedSequential Monte Carlo(SMC) methods are a set of simulation-
based approaches which use variates from the posterior, and provide an attractive solution to
compute the posterior distribution of interest: at each time step, the posterior distribution is
approximated by a set ofparticlesgenerated by animportance distributionπ(α|y), chosen such
that it is easy to sample, and whose support is assumed to include that ofp(α|y), as shown in
the next section.

1.2.3 Monte Carlo Particle Filters

1.2.3.1 Problem Statement

As stated before, we usually cannot obtain an analytic expression for the posterior distribution:
this is the reason why we have to resort to stochastic simulation. The unobserved signal (hidden
state)αt is modelled as a Markov process of initial distributionp(α0) and transition equation
p(αt |αt−1):

p(α0) for t = 0,

p(αt |αt−1) for t = 1,2,3, · · · .

We denote byα0:t
4
= {α0, · · · ,αt} andy1:t

4
= {y1, · · · ,yt} the signals and the observations re-

spectively, up to stept.
Our objective is to estimate recursively in time the posterior distributionp(α0:t |y1:t), its

associated features (including the marginal distributionp(αt |y1:t), known as thefiltering distri-
bution), and the expectations

I( ft) = Ep(α0:t |y1:t){ ft(α0:t)}
4
=

∫
ft(α0:t)p(α0:t |y1:t)dα0:t
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for some function of interest, like the mean of the sources, or their covariance.
At any timet, the posterior distribution is given by Bayes’ theorem:

p(α0:t |y1:t) =
p(y1:t |α0:t)p(α0:t)∫

p(y1:t |α0:t)p(α0:t)dα0:t
.

A recursive formula for this joint distribution can be obtained as follows:

p(α0:t+1|y1:t+1) = p(α0:t |y1:t)
p(yt+1|αt+1)p(αt+1|αt)

p(yt+1|y1:t)
.

The marginal distributionp(αt |y1:t) also satisfies the following recursive equations (prediction
and update respectively):

p(αt |y1:t−1) =
∫

p(αt |αt−1)p(αt−1|y1:t−1)dαt−1;

p(αt |y1:t) =
p(yt |αt)p(αt |y1:t−1)∫

p(yt |αt)p(αt |y1:t−1)dαt
.

Monte Carlo integration methods have the great advantage of not being subject to any linearity
or Gaussianity constraints on the model, and they also have appealing convergence properties.
The basic idea is that a large number of samples drawn from the required posterior distribution
is sufficient to approximate the posterior distribution itself, and to approximate the integrals
appearing in the "prediction and update" equations mentioned before.

1.2.3.2 Importance Sampling

Assume thatN >> 1 random samples{α(i)
0:t ; i = 1, · · · ,N}, calledparticles(hence the termpar-

ticle filters), have been generated from the posteriorp(α0:t |y1:t): a Monte Carlo approximation
of this function is thus given by:

pN(dα0:t |y1:t) =
1
N

N

∑
i=1

δα(i)
0:t

(dα0:t),

whereδα(i)
0:t

(dα0:t) denotes the delta-Dirac mass located inα(i)
0:t . The following estimate of the

function of interestI( ft) can be obtained straightforwardly by:

IN( ft) =
∫

ft(α0:t)pN(dα0:t |y1:t) =
N

∑
i=1

ft
(

α(i)
0:t

)
.

Unfortunately, it is usually impossible to sample efficiently from the posterior distribution at any
stept, since it is, in general, multivariate, non-standard, and only known up to a proportionality
constant. A classical solution consists of using theimportance samplingmethod [70], which
introduces an arbitraryimportance function(also referred to as theproposal distributionor the
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importance sampling distribution) π(α0:t |y1:t). Provided that the support ofπ(α0:t |y1:t) includes
the support ofp(α0:t |y1:t), we get the identity

I( ft) =
∫

ft(α0:t)w(α0:t)π(α0:t |y1:t)dα0:t∫
w(α0:t)π(α0:t |y1:t)dα0:t

,

wherew(α0:t) is known as theimportance weight:

w(α0:t) =
p(α0:t |y1:t)
π(α0:t |y1:t)

.

Consequently, it is possible to obtain a Monte Carlo extimate ofI( ft) usingN particles{α(i)
0:t ; i =

1, · · · ,N} sampled fromπ(α0:t |y1:t):

ĪN( ft) =
1
N ∑N

i=1 ft
(

α(i)
0:t

)
w
(

α(i)
0:t

)
1
N ∑N

j=1w
(

α(i)
0:t

) =
N

∑
i=1

ft
(

α(i)
0:t

)
w̃(i)

t ,

where thenormalised importance weights̃w(i)
t are given by:

w̃(i)
t =

w
(

α(i)
0:t

)
∑N

j=1w
(

α(i)
0:t

) .

This integration method can be interpreted as a sampling method, where the posterior distribu-
tion is approximated by:

p̄N(dα0:t |y1:t) =
N

∑
i=1

w̃(i)
t δα(i)

0:t
(dα0:t).

It is clear that importance sampling needs all the data sety1:t before estimatingp(α0:t |y1:t).
That makes this method not adequate for recursive estimation, because, whenever new datayt+1

become available, the importance weights over the entire state sequence need to be recomputed.
As the complexity of this operation increases with long sequences, recursive techniques for
overcoming this problem have been studied.

1.2.3.3 Sequential Importance Sampling

Our aim is to estimate the posterior density functionp(α0:t |y1:t) without modifying the past sim-

ulated trajectories{α(i)
0:t−1; i = 1, · · · ,N}. This means that the importance functionπ(α0:t |y1:t)

has to admitπ(α0:t−1|y1:t−1) as marginal distribution, which happens when the importance
function is restricted to be of the general form:
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π(α0:t |y1:t) = π(α0:t−1|y1:t−1)π(αt |α0:t−1,y1:t)

= π(α0)
t

∏
k=1

π(αk|α0:k−1,y1:k).

This importance distribution allows the importance weights to be avaluated recursively:

w̃t ∝ w̃t−1
p(yt |α

(i)
t )p(α(i)

t |α
(i)
t−1)

π(α(i)
t |α

(i)
0:t−1,y1:t)

.

The only constraints on the selection of the importance function are those that have been men-
tioned so far. It follows that a wide choice forπ(α0:t |y1:t) is allowed.

1.2.3.4 Selection

Unfortunately, for the importance distributions of the form specified before, a degeneracy phe-
nomenon may occur: after a few iterations, all but one of the normalised importance weights
are very close to zero. This happens because the variance of the importance weights can only
increase (stochastically) over time, as demonstrated in [1]. As a result of the degeneracy phe-
nomenon, it is indispensable to include one more step (calledselection) in the particle filter al-
gorithm. The purpose of this procedure is to discard the particles with low importance weights,
and to multiply the particles having high importance weights: the idea is that of associating

with each particle (saỹα(i)
0:t : i = 1, · · · ,N) a number of "children"N(i)

t , such that∑N
i=1N(i)

t = N,

in order to obtainN new particles{α(i)
0:t : i = 1, · · · ,N}. For each particle, ifN( j)

t = 0, thenα̃( j)
0:t

is discarded, otherwise it hasN( j)
t children at stept +1. More formally, the weighted empirical

distribution p̄N(dα0:t |y1:t) = ∑N
i=1 w̃(i)

t δα(i)
0:t

(dα0:t) is replaced by the unweighted measure

pN(dα0:t |y1:t) =
1
N

N

∑
i=1

N(i)
t δα(i)

0:t
(dα0:t),

whereN(i)
t is the number of offsprings associated to the particleα(i)

0:t . After the selection step,
all the importance weights are divided byN; since they do not depend on any past values of
the normalised importance weights, all information regarding the old importance weights is
discarded.

There is a variety of selection schemes, includingResidual Resampling[37], Stratified Sam-
pling [37], andMultinomial Sampling, also known as SIR (Sampling Importance Resampling)
[71]: all of them can be implemented in a number of operations which is proportional to the

number of particlesN, and their aim is to provide the coefficientsN(i)
t such thatpN(dα0:t |y1:t)

is close to ¯pN(dα0:t |y1:t), in the sense that, for any functionft ,∫
ft(α0:t)pN(dα0:t |y1:t)≈

∫
ft(α0:t)p̄N(dα0:t |y1:t),

according to different criteria.
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As we can see in figure1.1, the filtering density is approximated by an adaptive stochastic
grid. This is a direct consequence of the Monte Carlo approach, where the particles interact
with each other randomly in time, and either give birth to children, or die out, depending on the
magnitude of their weights.

Figure 1.1: Particle Filtering - The adaptive stochastic grid and the selection step, when the density
approximation is propagated from stept−1 to stept ([25]).

1.2.3.5 The Algorithm

Now it is possible to describe in outline the general particle filter algorithm: as stated before,

the recursive Monte Carlo filter operates onN particles{α(i)
0:t : i = 1, · · · ,N}, given at stept−1,

and distributed approximately according top(α0:t−1|y1:t−1). The algorithm has a structure that
can be divided into two main blocks, and it proceeds as follows at stept:

• Sequential Importance Sampling Step:

– For i = 1, · · · ,N , sample

α̃(i)
t ∼ π(αt |α

(i)
0:t−1,y1:t)

and set
α̃(i)

0:t = (α(i)
0:t−1, α̃

(i)
t );
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– For i = 1, · · · ,N , evaluate the importance weights, up to a normalising constant:

w(i)
t ∝

p(yt |α̃
(i)
0:t ,y1:t−1)p(α̃(i)

t |α̃
(i)
t−1)

π(α̃(i)
t |α̃

(i)
0:t−1,y1:t)

;

– For i = 1, · · · ,N , normalise the importance weights:

w̃(i)
t =

w(i)
t

∑N
j=1w( j)

t

.

• Selection Step:

– Discard / multiply particles{α̃(i)
0:t : i = 1, · · · ,N} with low / high normalised impor-

tance weights to obtainN particles:

{α(i)
0:t : i = 1, · · · ,N}.

Although the computational complexity at eacht step is proportional toN, the above algorithm
is parallelisable, so that efficient implementation may be achieved by using parallel processors.
It is worth mentioning that there is an unlimited number of choices for the implementation of
this algorithm, as we have a lot of freedom both in the choice of the importance distribution and
of the selection schemes.

1.2.4 Implementation

In this section, the particle filter is implemented considering the source separation problem:
our aim is to operate a Bayesian source separation of the different independent components,
given a set of observation, providing MMSE estimators of each source through the knowledge
of the approximations of the posterior distributions computed by the particle filter. We allow the
sources to have non-Gaussian distributions; the mixing-system is assumed to be non-stationary,
and we also take space-varying noise into account.

1.2.4.1 Model Specification

Before illustrating the implementation of the particle filter algorithm, we introduce the model
we will follow ([ 1]).

We consider instantaneous mixing of independent sources, each one modelled as a mixture
of a known number of Gaussian components: this model is very flexible, generic and was
adopted by various researchers in the literature (e.g. [31, 60, 32]).

The mixing-system is assumed to be non-stationary, and we also take space-varying noise
into account. Letn be the number of sensors: each of then observationsy will be represented
as a row vector oft elements, wheret is the number of the pixels we are taking into account.
The number of independent sourcesα is m (of course, each one is represented as a row vector
of t elements).
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The general model for the observations is thus, at timet:

y1:n,t = Htα1:m,t +w1:n,t

wherey1:n,t , α1:m,t andw1:n,t are column vectors, representing then observations, themsources
and then additive noise samples at timet respectively. Then×m real valued mixing matrixHt

varies int, and we can re-parametrise it into a vectorht = vec{Ht} so that[ht ]n( j−1)+1 = hi, j,t .
Now we are able to express the model in terms of state equation and observation equation,

in this way:
ht = Atht−1 +vt

y1:n,t = Ctht +w1:n,t

whereAt andCt are (nm× nm) and (n× nm) real valued matrices respectively, andwt is a
(n× 1) real vector. Ct can be expressed in terms of the source signal vectorα1:m,t , asCt =
αT

1:m,t
⊗

In. In absence of further prior information, we assumeAt = Inm, and of courseCt is
unknown, as it consists of the source signals to be estimated. The distributions of the dynamic
noisevt and the observation noisewt are assumed to be i.i.d. and mutually independent:vt ∼
N (0,σv) andwt ∼ N (0,σw), with obvious notation. The introduction of the state equation
allows to deal with non-stationary mixing matrices, as the coefficients ofh can be updated at
every step.

In this formulation there is a scaling ambiguity, as we can multiplyHt by a non-zero constant
c and divide the sourcesα1:m,t by c and obtain the same observations: in order to solve this
ambiguity, we constrainHt to have constant unity diagonal forHt square (m= n), or set the
diagonal of sub-matrixHa

m×m to unity if n > m:

Ht =
[

Ha
m×m

Hb
(n−m)×m

]

1.2.4.2 Model of the Sources

As them sources are statistically independent of one another:

p(α1:m,t) =
m

∏
i=1

p(αi,t).

Moreover, we can model each source by a finite mixture of Gaussians, so:

p(αi,t |µi, j,t ,σ2
i, j,t) =

qi

∑
j=1

ρi, jN (αi,t ;µi, j,t ,σ2
i, j,t);

qi

∑
j=1

ρi, j = 1,

whereρi, j is the weight of thejth Gaussian component of theith source, andqi is the number of
Gaussian components for theith source.

Now we will consider a hidden variablezi which takes on a finite set of valuesZi = {1, · · · ,qi},
so that we can denote the distribution ofαi,t as if at timet only the jth Gaussian component is
active, with probabilityρi, j :

p(αi,t |zi,t = j) = N (αi,t ;µi, j ,σ2
i, j)
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At time t let z1:m,t
4
= [z1,t · · ·zm,t ]T . Given that the sources are statistically independent of one

another,α1:m,t have distributions:

p(α1:m,t |z1:m,t) = N (α1:m,t ;µ(z1:m,t),Γ(z1:m,t)),

where
µ(z1:m,t) = [µ1,z1,t , · · · ,µm,zm,t ]

T

and
Γ(z1:m,t) = diag{σ2

1,z1,t
, · · · ,σ2

m,zm,t
}.

It is possible to describe the discrete probability distribution ofz1:m,t using the i.i.d. model:
in this case, the indicators of the stateszi,t have identical and independent distributions. If we
want to introduce temporal correlation beween the samples of a particular source, we have to
consider the first-order Markov model case, where the vector of the states evolves as a homo-
geneous Markov chain fort > 1:

p(z1:m,t = zl |z1:m,t−1 = z j) =
m

∏
i=1

p(zi,t = [zl ]i |zi,t−1 = [z j ]i) =
m

∏
i=1

π(i)
j,l ,

whereπ(i)
j,l is an element of theqi×qi real valuedtransition matrixfor the states of theith source,

denoted byπ(i). The state transition can be thus parametrised by a set ofm transition matrices
π(i), i ∈ {1, · · · ,m}.

Given the observationsyt (assuming that the number of sourcesm, the number of Gaussian
componentsqi for the ith source, and the number of sensorsn are known), we would like to
estimate all the following unknown parameters of interest, grouped together:

θ0,t = [α1:m,0:t ,z1:m,0:t ,{µi, j,0:t},{σ2
i, j,0:t},{π(i)

0:t},{σ2
w1:n,0:t

}],

where we recall thatα1:m,0:t are the sources,z1:m,0:t is the matrix of the indicator variables which
determines which Gaussian component is active at a particular time for each source,{µi, j,0:t}
and{σ2

i, j,0:t} are the means and the variances of thejth Gaussian component of theith source,

{π(i)
0:t} is the transition matrix for the evolution ofzi,0:t , and{σw1:n,0:t} represents the standard

deviation of the observation noise.

1.2.4.3 Rao-Blackwellisation

In our case, referring to the model of the sources defined before, we want to estimate the wide
set of unknown parameters grouped together in

θ0,t = [α1:m,0:t ,z1:m,0:t ,{µi, j,0:t},{σ2
i, j,0:t},{π(i)

0:t},{σ2
w1:n,0:t

}],

and we have also to consider that the mixing matrix is both space-varying and not precisely

known. The particles we should deal with will be thus{(h(i)
0:t ,θ

(i)
0:t) : i = 1, · · · ,N}, generated

according top(h0:t ,θ0:t |y1:t). An empirical estimate of this distribution is given by

p̄N(dh0:t ,θ0:t |y1:t) =
1
N

N

∑
i=1

δ
h0:t

(i),δθ0:t
(i)(dh0:t ,dθ0:t),
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Figure 1.2:Particle Filtering - Graphical representation of the model ([1]).

and, as a corollary, an estimate ofp(ht ,θt |y1:t) is

p̄N(dht ,θt |y1:t) =
1
N

N

∑
i=1

δ
ht

(i),δθt
(i)(dht ,θt).

It is possible to reduce the problem of estimatingp(ht ,θ0:t |y1:t) to a simpler one of sampling
from p(θ0:t |y1:t). In fact,

p(ht ,θ0:t |y1:t) = p(ht |θ0:t ,y1:t)p(θ0:t |y1:t).

Given an approximation ofp(θ0:t |y1:t), an approximation ofp(ht |θ0:t ,y1:t) may straightfor-
wardly be obtained considering the following state space model for each particle:

h(i)
t = Ath

(i)
t−1 +v(i)

t ;

y1:n,t = Cth
(i)
t +w(i)

1:n,t ;

where we recall thatCt can be expressed in terms of the source signal vectorα1:m,t , asCt =
αT

1:m,t
⊗

In. The posterior distribution of the stateht given the observationsy1:n,t can be recur-
sively estimated in closed form using the Kalman filter [30].

This technique, calledRao-Blackwellisation[36], leads to better results, as we are reducing
the size of the parameter set to be estimated by marginalising out the mixing coefficientsht

using the Kalman filter, so that the only distribution we have to estimate by particle filtering is
p(θ0:t |y1:t).
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1.2.4.4 Prior Distribution as Importance Function

Referring to the approach defined before, the samples used to estimate the posterior density
functions of the parameters of interest have to be drawn from an importance distribution of the
general form

π(θ0:t |y1:t) = π(θ0:t−1|y1:t−1)π(θt |θ0:t−1,y1:t)

The best strategy is to choose, at stept, the importance distribution that minimises the variance
of the importance weights, givenθ0:t−1 andy1:t . In [2] we find the proof that the importance
distribution we are looking for is:

π(θt |θ0:t−1,y1:t) = p(θt |θ0:t−1,y1:t).

From Bayes’ rule, the optimal importance distribution may be expressed as

p(θt |θ0:t−1,y1:t) =
p(yt |θ0:t ,y1:t−1)p(θt |θt−1)

p(yt |θ0:t−1,y1:t−1)
,

being

p(yt |θ0:t−1,y1:t−1) =
∫

p(yt |θ0:t ,y1:t−1)p(θt |θ0:t−1)dθt .

Unfortunately it is not easy to sample directly from the optimal importance distribution, and the
above integral cannot be evaluated analitically, since
p(yt |θ0:t ,y1:t−1) is a complex possibly non-linear function ofθt . This is the reason why the
following sub-optimal method will be employed throughout, taking the importance distribution
at stept to be theprior distribution:

π(θ0:t |y1:t) = p(θ0:t) = p(θ0)
t

∏
k=1

p(θk|θ0:k−1).

In this case, the importance weights can be computed recursively by

w̃(i)
t ∝ w̃(i)

t−1p(yt |θ
(i)
t )

whose evaluation requires only one step of the Kalman filter for each particle. Now it is conve-
nient to factorize the prior importance function:
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p(θt |θt−1) = p(α1:m,t ,z1:m,t ,πt ,{µi, j,t},{σ2
i, j,t},{σ2

w,K,t}|
α1:m,t−1,z1:m,t−1,πt−1,{µi, j,t−1},{σ2

i, j,t−1},{σ2
w,K,t−1})

= p(α1:m,t ,z1:m,t ,πt ,{µi, j,t},{σ2
i, j,t}|

α1:m,t−1,z1:m,t−1,πt−1,{µi, j,t−1},{σ2
i, j,t−1})×

p({σ2
w,K,t}|{σ2

w,K,t−1})

If now we consider a new variable,θ̃t , which excludes the observation noise variance, we obtain

p(θ̃t |θ̃t−1) = p(α1:m,t ,z1:m,t ,πt ,{µi, j,t},{σ2
i, j,t}|θ̃t−1)

= p(α1:m,t |z1:m,t ,{µi, j,t},{σ2
i, j,t})×

p({µi, j,t}|{µi, j,t−1},zi,t)×
p({σ2

i, j,t}|{σ2
i, j,t−1},zi,t)×

p(z1:m,t |z1:m,t−1,πt)×
p(πt |πt−1).

This hierarchical structure allows us to obtain an approximation of the distribution of the sources
exploiting the particles generated from the distributions of the other parameters, sampling sub-
sequently fromp(πt |πt−1), p(z1:m,t |z1:m,t−1,πt), p({σ2

i, j,t}|{σ2
i, j,t−1},zi,t), p({µi, j,t}|{µi, j,t−1},zi,t),

and finally obtain the particles of the distributionp(α1:m,t |z1:m,t ,{µi, j,t},{σ2
i, j,t}).

1.2.5 Work in the literature

There are a few publications in the literature on the use of particle filters for separation. In
particular, Everson and Roberts [81] have implemented a simplified version of particle filtering
where they consider only the mixing matrix to be nonstationary. The examples they give con-
sider the case when the mixing is piece-wise stationary with abrupt changes in their values at
the end of stationary periods. They assume generalised Gaussian distributions for the sources.
Their implementation is especially of interest for speech on mobile stations. Andrieu and God-
sill [15] instead consider a parametric AR model for the sources (with the audio signals in mind)
and provide a particle filtering scheme general enough to model convolutional mixing. They re-
port simulations on synthetic sources. Their particle filtering use is mor general and they adopt
an importance function which can be described as a hybrid one. It is not the prior distribution
nor the posterior which is the optimal but somewhere in between. The insight into this choice
is interesting. Ahmed et al. [1] instead adopt a Gaussian mixture model for the sources and
persent a hierachical model which fully exploits Bayesian formulation. The description in this
report closely followed their formulation. Th eproblem in this approach is the choice of the im-
portance function (they chose the prior pdf). Recent work is by Costagli et al. who adopted this
formulation for a practical source separation problem namely the separation of the independent
components in astrophysical images [80].
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1.3 Method of Mixtures

Author: J. Grim, UTIA Czech Republic

1.3.1 Finite Mixture Models

In the last decades the finite distribution mixtures became increasingly popular as a flexible tool
to estimate unknown (possibly multimodal) probability density functions or discrete distribu-
tions in multidimensional spaces. The finite mixture models are applicable to pattern recogni-
tion [56, 55, 54], cluster analysis [59, 116], data mining [51, 52], texture modelling [53] and
to many other problems which can be solved by estimating unknown probability distributions
or densities [86]. Finite mixtures can also be used to design biologically interpretable neural
networks [55, 54, 58, 63, 104].

The finite mixture models can be viewed as a reasonable compromise between the paramet-
ric and nonparametric approaches to estimating probability distributions. The standard paramet-
ric estimates are advantageous mainly because of a small number of parameters to be identified.
Nevertheless, the assumption of a simple parametric form of the estimated distribution (e.g.
normal) may be too restrictive. If the assumed parametric model is not adequate, the resulting
solution may be poor.

On the other hand, the nonparametric estimation methods do not assume any specific type
of the estimated probability distribution but they are computationally awkward especially in
case of a large sample size. Typically, in case of the nonparametric kernel estimates we can
guarantee the asymptotically unbiased and consistent density estimate at any continuity point
of the estimated density, however, we have to store all available data vectors.

Let us recall that the kernel estimate with a normal kernel function can be viewed formally as
a normal mixture with uniform weights. In this sense finite mixture models provide a convenient
estimation method that occupies the full range between the classical parametric methods and
the nonparametric kernel estimates. They have much of the flexibility of the nonparametric
methods while keeping the advantage of a limited number of the parameters included.

1.3.2 EM Algorithm

The key point of finite mixture models is a widely applicable method to compute the maximum-
likelihood estimates of mixtures by means of the iterative EM algorithm. The EM algorithm
increases the maximized likelihood function in each iteration without any control parameters
like step size. In the last two decades nearly all applications of finite mixture models make use
of the EM algorithm. The EM algorithm can be applied in multidimensional spaces to con-
tinuous, discrete and mixed-type data and to different types of components. There are several
monographs on estimating mixtures by means of EM algorithm (cf. [33], [107], [84], [85]), the
most recent by McLachlan and Peel [86].

In case of finite mixtures the log-likelihood function is known to have local maxima nearly
always. As the achieved local maximum is starting-point dependent, the quality of the estimates
may be influenced by the chosen number of components and the initial parameter values. In
view of these facts the literature on EM algorithm is more or less dominated by the problem
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of a proper choice of the number of mixture components and by the optimization of the initial
parameters.

The tendency to local maxima is more probable in case of a small number of components,
small data sets and/or high-dimensional spaces. There is no generally accepted way to solve
the problem of the local optimality. A frequently proposed idea is to repeat the computation
from sufficiently many different starting points and to choose the highest local maximum as the
best solution (cf. [86], [107]). Obvious disadvantage of such a method is the computational
complexity. The problem of locally optimal parameter estimates can be avoided by using Bayes
estimation approach. Unfortunately, some of the underlying steps have to be solved by means
of approximation techniques. Mixture estimation in a Bayesian framework became feasible by
using posterior simulation via the recently developed Markov chain Monte Carlo method (cf.
[86, Chapter 4.]).

Let us remark that in the context of cluster analysis (cf. [16], [59]) the true number of
components is to be decided. One possibility to infer the proper number of components from
data is to use different likelihood ratio test statistics (cf. [86, Chapter 6.]).

There are also different approaches concerning a suitable choice of the initial parameter
values. If there is no prior knowledge the starting point is usually chosen randomly or by using
simple clustering techniques. In the paper [57] we have proposed to initialize the EM algorithm
by evaluating the modes of an optimized kernel estimate.

Another frequently discussed problem with the EM algorithm is the slow convergence in the
final iterations. Different acceleration methods are discussed in McLachlan and Peel [86, pp.
70-73], however, the acceleration procedures usually do not guarantee the valuable monotone
convergence of EM algorithm.

1.3.3 Approximation Problem

In applications it is useful to distinguish between the mixture identification problem (as dis-
cussed in Sec. 1.2) when the properly chosen number of components is essential and between
the practical problem of approximation of unknown distributions by means of mixtures when
only the approximation accuracy is the primary goal. Approximation problems often arise in a
technical environment when the data sets are produced automatically by some electronic mea-
surements (e.g. recognition of digitized numerals or characters, segmentation of digitized im-
ages, texture modelling etc.). In such cases we usually have a large number of multidimensional
measurements presumably with a multi-modal distribution.

The EM algorithm is known to have a tendency to suppress the weights of superfluous com-
ponents. This mechanism is not strong enough to control the mixture complexity reliably but it
is sufficient to avoid excessive number of components. In case of mixtures with a large number
of components (M = 101-102) we obtain usually a sigmoidal distribution of component weights,
i.e. there is usually a large part of components (10–20 %) having very low weights. Obviously,
these components can be omitted without affecting the approximation accuracy too much. In
this sense we may conclude from the experiments that the initial number of components does
not play an essential role in approximation problems.

Similar conclusions can be justified also by simple heuristic considerations. One can easily
imagine that there are many different possibilities to fit a mixture of many components to a large
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number of multi-dimensional measurements – each possibility corresponding to a local max-
imum of the related likelihood function. As it can be expected, the considered local maxima
are usually not very different and therefore the corresponding mixture models achieve a com-
parable approximation accuracy. In view of the above properties of the practical approximation
problems the proper initialization of mixtures with many components is less important since
there are no great differences between the individual local maxima. In case of randomly initial-
ized mixtures we may expect a comparable quality of the resulting approximations in repeated
experiments.

There is also another important aspect of the considerations above: the form of the compo-
nents playing a role similar to kernel functions is also less relevant and can be defined e.g. as a
product of univariate distributions. The assumption of product components corresponds to the
model of conditional independence which has some advantages as an approximation tool:

• any marginal distribution of a product mixture is easily available (unlike many parametric
models)

• the product mixtures can be estimated from incomplete data directly (instead of estimat-
ing missing values (cf. [24]) the mixture is always reduced to the subspace of the currently
available values)

• the EM algorithm simplifies computationally (e.g. no matrix inversion is necessary in
case of normal mixtures)

• the computational stability of EM Algorithm increases (no risk of singular matrices in
case of normal mixtures)

• the product components support a structural modification of the finite mixture model [56]
(application of the structural mixtures to classification and to some other problems is
dimension-independent)

• the product mixtures can be interpreted as neural network models in biological terms (cf.
[55], [54]).

In view of the obvious analogy with kernel estimates the approximation accuracy of the
conditional independence models can be arbitrarily increased by increasing the number of com-
ponents. Let us remark that the mixtures of products of general univariate discrete distributions
(defined by a vector of probabilities) are not identifiable (e.g. mixtures of multivariate Bernoulli
distributions as a special case [59]). This circumstance may facilitate the convergence of EM
Algorithm to the global maximum but it is undesirable in cluster analysis.

1.3.4 Historical comments

The problem of estimation of finite mixtures has been first formulated by Pearson in 1897 but
only since the sixties there is the effectively applicable iterative EM algorithm for computing
the maximum likelihood estimates of mixture parameters. When omitting the iteration index
the EM iteration equations may be easily obtained by algebraically rearranging the correspond-
ing likelihood equations for mixtures. It appears that using this heuristic idea Hasselblad first
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derived the EM iteration scheme ([62], [109]). The method has been studied and modified also
by Behboodian [69], Kale [73], Day [22], Wolfe [116], Peters and Walker [91] and others. It
has been observed in experiments that the EM algorithm increases the maximized likelihood
function in each iteration. However, there is no proof of this monotone property in the above
papers.

It appears that the first proof of the monotone convergence of EM algorithm is due to
Schlesinger [98] (cf. Grim [50]). The result of Schlesinger concerning the monotone con-
vergence of the EM procedure to some possibly local maximum has been reported by Isaenko
and Urbakch [68] and also in full detail in the book of Ajvazjanet al. [4].

At present the standard reference on EM algorithm is the paper of Dempster et.al. [24]
who introduced the name EM algorithm and demonstrated its wide applicability in different
fields. Unfortunately, finite mixtures are mentioned in this paper only as a special case in the
framework of incomplete data problem which is not very intuitive from the point of view of
estimating mixtures. A more tractable presentation of EM algorithm for mixtures can be found
e.g. in Titterington et.al. [107] or in the more recent monograph of McLachlan [86]. The paper
of Dempster et.al. [24] contains an error1 which has been first noticed by Wu [119] who also
analyzed the convergence properties of EM algorithm in detail.

1.3.5 Available Software

There is special software for estimating mixtures available on internet. However, the imple-
mentation of EM algorithm is relatively easy and therefore it is recommendable to write own
procedure especially if the underlying problem is specific in a way. The possibility to modify
the EM iteration equations may be more important than the advantage of a well designed exter-
nal procedure. The following list of software products with a brief description and availability
address can be found in the monograph [86]:

EMMIX (McLachlan, Peel, Adams, and Basford, 1999).
A general tool to fit mixtures of normal components by maximum likelihood via the EM algorithm to
continuous multivariate data.
http://www.maths.uq.edu.au/∼gjm/emmix/emmix.html

AUTOCLASS (Cheeseman and Stutz, 1996)
Adopts a Bayesian approach to fit mixtures of normal or uniform distributions to continuous multivariate
variables, and mixtures of Bernoulli distributions to discrete data. The program is also able to handle
missing data and the case of an unspecified number of components.
http://ic∼www.arc.nasa.gov/ic/projects/bayes∼group/people/cheeseman/

BINOMIX (Erdfelder, 1993)
Fits a mixture of binomial or beta-binomial distributions using the EM algorithm.
http://www.psychologie.uni-bonn.de/∼erdfel_e/comp/binomix.html

C.A.MAN (Boehning, Schlattmann, and Lindsay, 1992,1998)
Fits mixtures of normal (with equal or unequal variances), Poisson, geometric, binomial, exponential, or
Laplace univariate distributions, using one of four fitting methods, including the EM algorithm. It also
has a semi-parametric method to estimate an appropriate number of components. The maximum number

1an incorrect inequality in Eq. (3.14), p. 8
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of data points that the PC version can analyze is 500.
http://ftp.ukbf.fu∼berlin.de/sozmed/caman.html

MCLUST/EMCLUST (Fraley and Raftery, 1999)
A software package for hierarchical clustering on the basis of mixtures of normal components under
various parameterizations of the component-covariance matrices. The EM algorithm is used in the fitting
process and BIC is used for the determination of the number of components. It has the option to include
an additional component in the model for background (Poisson) noise.
http://www.stat.washington.edu/fraley/software.html

MGT (Jones and McLachlan, 1990b)
A subroutine for fitting a mixture of univariate normal distributions to binned and truncated data.
http://www.stat.cmu.edu/apstat/

MIX (Macdonald and Pitcher, 1979)
Works with univariate binned data, with a maximum of 80 bins and 15 components. The program will
fit mixtures of normal, log-normal, gamma, exponential, or Weibull components.
http://icarus.math.mcmaster.ca/peter/mix/mix.html

MIXBIN (Uebersax)
Fits mixtures of binomial distributions via an EM-type algorithm and also gives the asymptotic standard
errors by inverting the observed information matrix. The likelihood ratio test statistics AIC and BIC are
also computed.
http://members.xoom.com/jsuebersax/papers.html

PROGRAM FOR GOMPERTZ MIXTURES (McLachlan et al., 1997)
An algorithm for fitting mixtures of two Gompertz distributions to censored survival data.
http://www.stat.ucla.edu/journals/jss/v02.i07

MPLUS (B. Muthén and L. Muthén)
A statistical modelling program that includes tools to fit latent class models. The criteria AIC and BIC
are used for model selection.
http://www.statmodel.com/

MULTIMIX (Jorgensen and Hunt, 1996)
Adopts the location model to fit mixtures to mixed continuous and categorical variables.
ftp://ftp.math.waikato.ac.nz/pub/maj/

NORMIX (Wolfe, 1965, 1967, 1970)
Fits mixtures of normals or Bernoulli distributions from specified initial values of the parameters or from
initial partitions obtained by various hierarchical clustering methods.
http://alumnus.caltech.edu/∼wolfe/

SNOB (Wallace and Dowe, 1994)
It allows the fitting of mixtures of discrete distributions (multistate Bernoulli or categorical), normal
(with diagonal covariance matrices), Poisson, and von Mises distributions. The input data can contain
missing values and the number of components can be estimated.
http://www.cs.monash.edu.au/∼dld/snob.html

BAYESIAN MODELLING AND MARKOV CHAIN SAMPLING (Neal, 1999)
Allows the fitting of mixtures via a Bayesian approach.
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http://www.cs.toronto.edu/∼radford/fbm.software.html

1.4 Genetic Algorithms

Author: Nahum Kyriati, Tel Aviv University

Many challenges in engineering and science boil down to optimization problems. Consider the basic
problem of finding the maximum of a function within a search space. The case of unimodal objective
functions is well understood and standard solutions exist, see e.g. [78]. Finding the global maximum
of a multimodal function is much more difficult. It is easy to show that, in the worst case, the global
maximum of a general function defined on continuous support cannot be found in finite time [108].
If the search space is discrete, global optimization can in principle be accomplished using exhaustive
search. The feasibility of exhaustive search depends on the size of the search space, the cost of objective
function evaluation, the available computing power and the time constraint. In the context of global opti-
mization research, the interesting problems are those for which exhaustive search is not a viable option.
These “expensive” optimization problems are common, showing up in diverse application domains, from
aerospace engineering to financial planning, and from oil exploration to modem adaptation.

Various approaches to global optimization have been suggested [108]. Note that the utility of any
global optimization method is problem dependent [117]. This means that global optimization algorithms
should be tuned to the specific problems to which they are applied, and must utilize apriori knowledge to
the fullest extent. Genetic algorithms [64, 113, 101] have been successfully applied to highly important
optimization tasks. In a genetic algorithm, a set of candidate locations iteratively evolves using operators
inspired by the principles of crossover, mutation and selection of the fittest. In many useful cases, the
candidates may rapidly converge to the global maximum. Holland’s schema theorem, studies of deceptive
problems and the analysis of neighborhood structures and landscapes provide some insight as to the
fruitfulness of applying genetic search to classes of objective functions, see [120].

Thanks to significant research efforts, especially in the last decade, genetic algorithms now have a
solid theoretical basis. Many interesting results are rooted in the Markov chain model of genetic algo-
rithms [90]. For example, it has been shown that the canonical genetic algorithm will never converge to
the global optimum, but variants of the algorithm that always maintain the best solution in the population
(elitist schemes) will converge to the global optimum [96]. See also [105, 23, 94, 118, 77].

In standard genetic algorithms, once a maximum is found, candidates representing smaller local max-
ima are suppressed and eventually disappear. This is not always desirable. In many important problems,
significant local maxima represent useful solutions, or solution strategies, that are valuable altern a tives
to the global maximum. For example, in routing design, a secondary maximum might represent a backup
operational scheme. In computer vision, the multiple maxima of a multimodal function could correspond
to several objects, or image primitives, that should be all detected [95, 79]. Indeed, genetic algorithms
aimed at finding all significant local maxima of a given objective function have been suggested. Some
are sequential, i.e., determine local maxima one by one [9]. Others are parallel search methods (niching
algorithms) in which candidates representing a multitude of local maxima can coexist throughout the it-
erative process [46]. We focus on the latter, and loosely refer to them as multi-modal genetic algorithms,
in the sense that several modes should be simultaneously detected. Theoretical analyses of niching algo-
rithms, e.g. [65, 66] elucidate the fast convergence to niching equilibrium, the long niche loss times, and
the dependence of these characteristics on the fitness landscape, i.e., on the properties of the objective
function.
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Whenever a genetic algorithm is called into operation, the right time to terminate the search must
also be decided. This problem is obvious, and its importance cannot be overstated. Stopping too early
means that the solution is inadequate; stopping too late implies that valuable resources are wasted. The
lack of good stopping rules was widely recognized as a major deficiency in genetic algorithms, see e.g.
[49]. Given its significance, the stopping problem has received surprisingly little attention. Practitioners
use simplistic rules, such as “stop afterk iterations”. More sophisticated rules, such as ”stop when there
has been no significant improvement in the lastk iterations” have been suggested [35, 100] in the context
of restart scheduling, i.e., periodic re-initialization of the search to alleviate the problem of premature
convergence. Specifically, performance data from previous runs on similar problems is used in [35] to
generate the best possible solution given a fixed amount of time. Adaptive changing of the threshold
number of generations according to the diversity of the fitness values in the population is proposed in
[100].

Advances in convergence analysis of genetic algorithms explain and quantify aspects of genetic
algorithm behavior that are closely related to the stopping problem [7, 48]. Notably, [8] provides a
bound on the number of iterations needed to achieve a level of confidence that a genetic algorithm has
seen all strings, and hence an optimal solution. Stopping rules for the elitist genetic algorithm model are
presented in [89].

When dealing with “expensive” global optimization problems, thorough exploration of the search
space cannot be carried out. This means that chances to find the global optimum itself are low, and one
must be satisfied with some “good” (but not necessarily optimal) solution that can be found reasonably
fast. In such cases, the potential benefit from continued search should be weighted against the cost
of additional probing. The key to analysis along these lines is in estimating of the expected utility of
additional search. A Bayesian approach was taken in [67]. The cost distribution of the last generation is
used as prior distribution, and after creation of the new distribution a posterior distribution is derived by
Bayes’ formula. Based on these estimations, one can decide whether to stop or continue.

Given the fundamental difficulty of global optimization, and the complexity of the genetic search
mechanism , the theoretical achievements in genetic algorithm research are admirable. However, the
all-important stopping problem, encountered in any challenging application of genetic algorithms, has
received much less attention than other aspects of evolutionary optimization. From the practitioner’s
point of view, there is a gap between the few theoretical results that are available and the need for clear
stopping rules. This is especially true for multi-modal genetic search: our survey of the literature revealed
n o results on optimal stopping of niching algorithms.

This document has several roots. One is our interest in global optimization problems in computer
vision, e.g. [75], especially those for which constraints on the objective function can be used to guarantee
convergence to the global maximum [103]. The other is our work on optimal stopping of voting in the
probabilistic Hough Transform, a poll-based pattern recognition method [74, 122, 99].
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Chapter 2

Current State of Work in the Network

2.1 Exact Metropolis Hastings sampling for marked point
processes using a C++ library

Author: Mari-Colette van Lieshout, CWI

In a joint report (CWI, Research Report PNA-R0403, June 2004 [96]) with R.S. Stoica of the Uni-
versity Jaume I, we document MPPLIB, a C++ library for marked point processes developed at CWI,
and illustrate its use by means of a new exact Metropolis-Hastings simulation algorithm. The paper is a
follow up of earlier work about generalising exact simulation algorithms for point processes to the case
of object processes.

2.2 Moving object detection in wavelet compressed video

Author: B. Ugur Toreyin, Bilkent University

2.2.1 Introduction

In many surveillance systems, the video is compressed intra-frame only without performing motion
compensated prediction due to legal reasons. Courts do not accept predicted image frames as legal
evidence in many countries [32]. As a result, a typical surveillance video is composed of a series of
individually compressed image frames. In addition, many practical systems have built-in VLSI hardware
image compressors directly storing the compressed video data coming from several cameras into a hard-
disc. The main reason for this is that standard buses used in PC’s cannot handle the raw multi-channel
video data.

In this paper, it is assumed that the video data is available in wavelet compressed format. In many
multi-channel real-time systems, it is not possible to use uncompressed video due to available bus and
processor limitations. The proposed moving object detection algorithm compares the Wavelet Transform
(WT) of the current image with the WTs of the past image frames to detect motion and moving regions
in the current image without performing an inverse wavelet transform operation. Moving regions and
objects can be detected by comparing the wavelet transforms of the current image with the wavelet
transform of the background scene which can be estimated from the wavelet transforms of the past
image frames. If there is a significant difference between the two wavelet transforms then this means
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that there is motion in the video. If there is no motion then the wavelet transforms of the current image
and the background image ideally should be equal to each other or very close to each other due to
quantization process during compression. Stationary wavelet coefficients belong to the wavelet transform
of the background. This is because the background of the scene is temporally stationary [4, 22, 32, 40,
65]. If the viewing range of the camera is observed for some time, then the wavelet transform of the entire
background can be estimated as moving regions and objects occupy only some parts of the scene in a
typical image of a video and they disappear over time. On the other hand, pixels of foreground objects
and their wavelet coefficients change in time. Non-stationary wavelet coefficients over time correspond
to the foreground of the scene and they contain motion information. A simple approach to estimate
the wavelet transform of the background is to average the observed wavelet transforms of the image
frames. Since moving objects and regions occupy only a part of the image they can conceal a part of the
background scene and their effect in the wavelet domain is cancelled over time by averaging.

Any one of the space domain approaches [4, 22, 40, 61, 65, 94] for background estimation can be
implemented in wavelet domain providing real-time performance. For example, the background estima-
tion method in [22] can be implemented by simply computing the wavelet transform of both sides of
their background estimation equations.

2.2.2 Hybrid Algorithm for Moving Object Detection

Background subtraction is commonly used for segmenting out objects of interest in a scene for appli-
cations such as surveillance. There are numerous methods in the literature [4, 22, 32, 40, 65]. The
background estimation algorithm described in [22] uses a simple IIR filter applied to each pixel indepen-
dently to update the background and use adaptively updated thresholds to classify pixels into foreground
and background. This is followed by some post processing to correct classification failures. Stationary
pixels in the video are the pixels of the background scene because the background can be defined as
temporally stationary part of the video. If the scene is observed for some time, then pixels forming the
entire background scene can be estimated because moving regions and objects occupy only some parts of
the scene in a typical image of a video. A simple approach to estimate the background is to average the
observed image frames of the video. Since moving objects and regions occupy only a part of the image,
they conceal a part of the background scene and their effect is cancelled over time by averaging. Our
main concern is real-time performance of the system. In Video Surveillance and Monitoring (VSAM)
Project at Carnegie Mellon University [22] a recursive background estimation method was developed
from the actual image data. LetIn(x,y) represent the intensity (brightness) value at pixel position(x,y)
in thenth image frameIn. Estimated background intensity value at the same pixel position,Bn+1(x,y), is
calculated as follows:

Bn+1(x,y) =
{

aBn(x,y)+(1−a)In(x,y) if (x,y) is non-moving
Bn(x,y) if (x,y) is moving

(2.1)

whereBn(x,y) is the previous estimate of the background intensity value at the same pixel position. The
update parametera is a positive real number close to one. Initially,B0(x,y) is set to the first image frame
I0(x,y). A pixel positioned at(x,y) is assumed to be moving if the brightness values corresponding to it
in image frameIn and image frameIn−1, satisfy the following inequality:

|In(x,y)− In−1(x,y)|> Tn(x,y) (2.2)

whereIn−1(x,y) is the brightness value at pixel position(x,y) in the(n−1)st image frameIn−1. Tn(x,y) is
a threshold describing a statistically significant brightness change at pixel position(x,y). This threshold
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is recursively updated for each pixel as follows:

Tn+1(x,y) =
{

aTn(x,y)+(1−a)(c|In(x,y)−Bn(x,y)|) if (x,y) is non-moving
Tn(x,y) if (x,y) is moving

(2.3)

wherec is a real number greater than one and the update parametera is a positive number close to one.
Initial threshold values are set to an experimentally determined value. As it can be seen from (3), the
higher the parameterc, higher the threshold or lower the sensitivity of detection scheme. It is assumed
that regions significantly different from the background are moving regions. Estimated background
image is subtracted from the current image to detect moving regions. In other words all of the pixels
satisfying:

|In(x,y)−Bn(x,y)|> Tn(x,y) (2.4)

are determined. These pixels at(x,y) locations are classified as the pixels of moving objects.

2.2.3 Moving Object Detection in Wavelet Domain

Above arguments and the methods proposed in [61], [94] are valid in compressed data domain as
well, [65]. In [65], DCT domain data is used for motion detection in video. In our case, a wavelet
transform based coder is used for data compression. The wavelet transform of the background scene can
be estimated from the wavelet coefficients of past image frames, which do not change in time, whereas
foreground objects and their wavelet coefficients change in time. Such wavelet coefficients belong to
the background because the background of the scene is temporally stationary. Non-stationary wavelet
coefficients over time correspond to the foreground of the scene and they contain motion information.
If the viewing range of the camera is observed for some time, then the wavelet transform of the entire
background can be estimated because moving regions and objects occupy only some parts of the scene
in a typical image of a video and they disappear over time.

LetBbe an arbitrary image. This image is processed by a single stage separable Daubechies 9/7 filter-
bank and four quarter size subband images are obtained. Let us denote these images asLL(1),HL(1),LH(1),HH(1) [3].
In a Mallat wavelet tree,LL(1) is processed by the filterbank once again andLL(2),HL(2),LH(2),HH(2)
are obtained. Second scale subband images are the quarter size versions ofLL(1). This process is re-
peated several times in a typical wavelet image coder. A three scale wavelet decomposition of an image
is shown in Fig. 1.

Let Dn represent any one of the subband images of the background imageBn at time instantn. The
subband image of the backgroundDn+1 at time instantn+1 is estimated fromDn as follows:

Dn+1(i, j) =
{

aDn(i, j)+(1−a)Jn(i, j) if (i, j) is non-moving
Dn(i, j) if (i, j) is moving

(2.5)

whereJn is the corresponding subband image of the current observed image frameIn. The update param-
etera is a positive real number close to one. Initial subband image of the background,D0, is assigned
to be the corresponding subband image of the first image of the videoI0. In Equations (1)-(4),(x,y)’s
correspond to the pixel locations in the original image, whereas in (5) and in all the equations in this
section,(i, j)’s correspond to locations of subband images’ wavelet coefficients.

A wavelet coefficient at the position(i, j) in a subband image is assumed to be moving if

|Jn(i, j)−Jn−1(i, j)|> Tn(i, j) (2.6)

whereTn(i, j) is a threshold recursively updated for each wavelet coefficient as follows:

Tn+1(i, j) =
{

aTn(i, j)+(1−a)(b|Jn(i, j)−Dn(i, j)|) if (i, j) is non-moving
Tn(i, j) if (i, j) is moving

(2.7)

43



Figure 2.1: Original image and its corresponding three levels of the wavelet tree consisting of
subband images (luminance data is shown)

whereb is a real number greater than one and the update parametera is a positive real number close
to one. Initial threshold values can be experimentally determined. As it can be seen from the above
equation, the higher the parameterb, higher the threshold or lower the sensitivity of detection scheme.
Estimated subband image of the background is subtracted from the corresponding subband image of the
current image to detect the moving wavelet coefficients and consequently moving objects as it is assumed
that the regions different from the background are the moving regions. In other words, all of the wavelet
coefficients satisfying the inequality

|Jn(i, j)−Dn(i, j)|> Tn(i, j) (2.8)

are determined.
It should be pointed out that there is no fixed threshold in this method. A specific threshold is

assigned to each wavelet coefficient and it is adaptively updated according to (2.7).
Once all the wavelet coefficients satisfying the above inequalities are determined, locations of cor-

responding regions on the original image are determined. If a single stage Haar wavelet transform is
used in data compression then a wavelet coefficient satisfying (8) corresponds to a two by two block in
the original image frameIn. For example, if(i, j)th coefficient of the subband imageHHn(1) (or other
subband imagesHLn(1), LHn(1), LLn(1)) of In satisfies (8), then this means that there exists motion in a
two pixel by two pixel region in the original image,In(k,m), k = 2i,2i−1,m= 2 j,2 j−1, because of the
subsampling operation in the discrete wavelet transform computation. Similarly, if the(i, j)th coefficient
of the subband imageHHn(2) (or other second scale subband imagesHLn(2), LHn(2), LLn(2)) satisfies
(8) then this means that there exists motion in a four pixel by four pixel region in the original image,
In(k,m),k = 4i,4i−1,4i−2,4i−3 andm= 4 j,4 j−1,4 j−2,4 j−3. In general, a change in thel th level
wavelet coefficient corresponds to a 2l by 2l region in the original image.

Visioprime [99] designed a video processing system which feeds the compressed video data in Aware
Inc.’s Motion Wavelet format to our system [42]. It uses Daubechies’ 9/7 biorthogonal wavelet. In this
biorthogonal transform, the number of pixels forming a wavelet coefficient is larger than four but most
of the contribution comes from the immediate neighborhood of the pixelIn(k,m) = (2i,2 j) in the first
level wavelet decomposition, and(k,m) = (2l i,2l j) in the l th level wavelet decomposition, respectively.
Therefore, in this paper, we classify the immediate neighborhood of(2i,2 j) in a single stage wavelet
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Table 2.1: Comparison of motion detection methods with videos having large moving objects.
All videos are captured at 10 fps

Large Object Videos Object Subband Domain Method VSAM GMM

VIDEO-1 MAN1 15 15 16
MAN2 19 19 19

VIDEO-2 MAN1 13 13 13
MAN2 74 74 74
MAN3 164 164 164

VIDEO-3 MAN1 15 15 15
MAN2 20 20 21

decomposition or in general(2l i,2l j) in the l th level wavelet decomposition as a moving region in the
current image frame, respectively. Determining the moving pixels of the corresponding regions, the
union of them on the original image is formed to locate the moving object(s) in the video. These pixels
are processed by a region growing algorithm to include the pixels located at immediate neighborhood of
them. This region growing algorithm checks whether the following condition is met for these pixels:

|Jn(i +m, j +m)−Dn(i +m, j +m)|> K Tn(i +m, j +m) (2.9)

wherem=±1, and 0.8 < K < 1, K ∈ R+. If this condition is satisfied, then that particular pixel is also
classified as moving. After this classification of pixels, moving objects are formed and encapsulated by
their minimum bounding boxes.

2.2.4 Experimental Results

The above algorithm is implemented using C++ 6.0, running on a 1500 MHz Pentium 4 processor. The
PC based system can handle 16 video channels captured at 5 frames per second in real-time. Each image
fed by the channels has the frame size of PAL composite video format, which is 720 pixel by 576 pixel.

The video data is available in compressed form. Only the lowest resolution part of the compressed
video bit-stream is decoded to obtain the low-low, low-high, high-low, and high-high coefficients which
are used in moving object detection. Higher resolution wavelet sub-images are not decoded.

The performance of our algorithm is tested using 65 different video sequences. These sequences
have different scenarios, covering both indoor and outdoor videos under various lighting conditions
containing different video objects with various sizes. Some example snapshots are shown in Fig. 2. In
a typical surveillance system, 16 video channels are displayed in a monitor simultaneously as shown in
Fig. 3. The size of each video window is 256 by 192 in a 1024 by 768 monitor. Therefore, there is no
need to reconstruct full-resolution images during regular screening. If the security guard wants to take a
look at one of the video channels more carefully then one needs to decode the entire bit-stream of that
particular channel and synthesize the full-resolution image using the reconstruction filter-bank of the
wavelet transform. Otherwise there is no need to fully decompress 16 channels.

The moving regions are also detected by using two different background subtraction methods over
180 by 144 size images. They are the hybrid method of VSAM [22] and the method based on modeling
the background using Gaussian Mixture Models (GMM) [85]. The low-resolution 180 by 144 images
can be obtained from the 2nd low-low of the wavelet pyramid and the composite image shown in Fig. 3
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Table 2.2: Comparison of motion detection methods with videos having small moving objects.
Toy car videos and Crowded parking lot video are captured at 15 fps and 5 fps, respectively

Small Object Videos Object Subband Domain Method VSAM GMM

Toy Cars-1 CAR1 40 40 40
CAR2 65 65 65
CAR3 75 75 76

Toy Cars-2 CAR1 70 70 71
CAR2 78 78 78

Crowded Parking Lot-3 MAN1 12 4 6
COUPLE1 14 11 11
WOMAN1 16 5 6
WOMAN2 18 17 17
COUPLE2 29 29 29

CAR1 34 34 35
CAR2 94 94 95

Table 2.3: Comparison of motion detection methods in a parking lot at night. This video is
captured at 3 fps

Video Object Subband Domain Method VSAM GMM

Dark Parking Lot MAN1 67 67 67
MAN2 233 233 235
MAN3 603 602 604

Table 2.4: Frame numbers of some outdoor videos at which false alarms occur when leaves of
the surrounding trees move with the wind. Indoor videos yield no false alarms

Videos Subband Domain Method VSAM GMM

OUTDOOR-1 72, 81, 86, 91 51, 61, 72, 81, 91 69, 72, 83
OUTDOOR-2 420, 440, 462,481,497 419, 432, 449, 463, 480, 498 422, 481, 487, 500
OUTDOOR-3 No false alarms No false alarms No false alarms
INDOOR-1 No false alarms No false alarms No false alarms
INDOOR-2 No false alarms No false alarms No false alarms
INDOOR-3 No false alarms No false alarms No false alarms
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Figure 2.2: Detection results of subband domain method with various object sizes and lighting
conditions both indoor and outdoor

can be populated by these images. The size of 2nd low-low images are close to the allocated window size
of 256 by 192 in Fig. 3.

Some moving object detection results are shown in Fig. 4 and 5. In all of the sequences, the regions
obtained by the methods using 180 by 144 low-low data are tighter than the ones detected by using
subband images as expected. This is natural because there is a compromise between location and scale
as we go up in the wavelet pyramid, i.e., smaller size images are used in our method. However, this is not
important in a video surveillance system because smaller size images are displayed in a regular monitor
during 16-channel simultaneous screening. The important issue is to detect moving objects and produce
alarms for the security guard watching the surveillance system because guards may get dizzy quickly and
may ignore events taking place in front of his or her eyes without an automatic motion detection based
alarm system.

Moving objects of various sizes are successfully detected by all three methods as summarized in
Tables 1-3. The numbers listed in these tables are the frame numbers of frames in which detection took

47



Figure 2.3: A typical surveillance system monitoring 16 channels simultaneously

place. For example, MAN2 object in VIDEO-1 sequence in Table 1 is detected at the 19th frame in
all three methods, namely our method utilizing the subband data only, the methods of VSAM [22] and
GMM [85].

Motion detection results in videos containing objects with sizes ranging from 20 by 20 to 100 by 100
objects are presented in Table 1. Such large moving objects are detected at the same time by all three
methods.

In Table 2, motion detection results of the algorithms with videos containing objects having sizes
comparable to 8 pixel by 8 pixel are presented. In these videos, there is not much difference in terms of
time delay between the methods. Smaller size objects are not important in a surveillance system with
well-placed cameras because they may be moving tree leaves, small birds, animals etc.

Table 3 presents a comparison of the methods with a video called “dark parking lot”. In this video,
the system is tested in a parking lot at night. The three methods raise alarms at around the same time
instants.

Time performance analysis of the methods are also carried out. The methods of VSAM and GMM
are implemented using videos with frame-size of 180 by 144. This image data is extracted from the low-
low image of the 2nd level wavelet transform. Our method uses all the coefficients in the 4th level subband
image, including low-low, high-low, low-high and high-high subimages. Performance results show that
subband domain method is by far the fastest one. Our method processes an image in 1.1msec, whereas
ordinary VSAM method processes an image in 3.1msecand the time for the GMM-based background
estimation approach to process an image takes about 28msec, on average. It is impossible to process 16
video channels consisting of 180 by 144 size images simultaneously using the VSAM and GMM-based
motion detection methods in a typical surveillance system implemented in a PC.
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Figure 2.4: Detection results for subband domain(left), VSAM(middle) and GMM based meth-
ods in a parking lot sequence recorded in the day-time

Figure 2.5: Detection results for subband domain(left), VSAM(middle) and GMM based meth-
ods in a parking lot sequence recorded at night

False alarms occur in all three methods due to leaves and tree branches moving in the wind, etc. In
indoor surveillance applications, neither of the three methods produce false alarms. On the other hand, in
outdoor surveillance applications, the GMM based method have the least false alarm performance among
the three methods studied in this paper as shown in Table 4. This is because it uses color information
and it models possible background scenarios in a probabilistic framework. As a result, it is more robust
against periodic motion such as motion of leaves. However, it still exhibits false alarms. The GMM
based method can be also implemented in the wavelet domain. However, even the wavelet domain
implementation is computationally too costly compared to other methods.

Motion sensitivity of our subband domain method can be adjusted to detect any kind of motion in the
scene, by going up or down in the wavelet pyramid and playing with the parameterb in equation (2.7).
However, by going up to higher resolution levels in the pyramid, the processing time per frame of the
subband domain method approaches to that of the ordinary background subtraction method of VSAM.
Similarly, false alarms may be reduced by increasingb in (2.7) at the expense of delays in actual alarms.

2.2.5 Conclusion

We developed a method for detecting motion in wavelet compressed video using only subband domain
data without performing inverse wavelet transform. Our results assure us that the motion detection
performance of the wavelet domain method is almost the same as methods using actual pixel data for
motion detection. This is an expected result because subband domain data contains all the necessary
information to reconstruct the actual image.

The main advantage of the proposed method compared to regular methods is that it is not only
computationally efficient but also it solves the bandwidth problem associated with video processing
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systems. It is impossible to feed the pixel data of 16 video channels into the PCI bus of an ordinary PC
in real-time. However, compressed video data of 16 channels can be handled by an ordinary PC and its
buses, hence real-time motion detection can be implemented by the proposed algorithm.

2.3 Higher order active contours

Author: Ian Jermyn, INRIA-ARIANA

2.3.1 Introduction

The task of image processing algorithms is to assert propositions about images, propositions that typi-
cally concern not the images themselves as collections of numbers, but the ‘scene’ of which the image
is a representation. Amongst the many varieties of propositions one can make, one of the most common
consists of those formed using the predicate ‘The volume that projects to regionR in the image domain
has propertiesP’. The central quantity of interest is then the probability distribution Pr(〈R,P〉|I ,K) over
these propositions given the image dataI and all prior knowledgeK. This distribution describes our
knowledge of the propositions, from which, if required, point estimates ofR andP can be extracted.
Attempts to assert such propositions thus have to construct, if only implicitly, a probability distribution
on the space of regions, Pr(R), which may depend on other, known or unknown parameters and the data.

An important issue in such a construction is whether the image domainΩ is regarded as a subset of
Z2 or R2. The first case includes Markov random fields and various graph-based approaches, while the
second is more or less coterminous with active contours, the subject of interest here. In this second case,
the technical difficulties involved in constructing probability distributions on the infinite-dimensional
space of regions leads to two different approaches. The first avoids an explicitly probabilistic descrip-
tion, and instead defines a ‘energy’ functional and attempts to minimize it. With some reservations, this
can be regarded as the computation of a MAP estimate using the negative logarithm of the probability
density. The second approach reduces the dimensionality of the space involveda priori, either by re-
stricting attention to finite-dimensional, easily parameterizable subspaces (e.g.splines), or by defining a
probability distribution on a quotient space defined by certain functionals of the region (e.g. low-order
moments). In either case, the output is generated by minimizing a functional over some space of regions,
or equivalently, in the cases of relevance here, of boundaries. Our work proposes new models of active
contours based on the first of the above two approaches, and we begin by looking at previous work in
this area.

2.3.1.1 Linear energies

The original paper on active contours was by [48], although the energies used were not well-defined as
functionals on regions, since they were parameterization dependent. If the parameterization is taken to be
arc length, then the energy used is the sum of boundary length and the integral of boundary curvature, plus
the negative of the integral of image gradient magnitude. ‘Balloon forces’ (a constant pressure, which can
be viewed as generated by adding the region area to the energy) were introduced by [21] to improve the
stability of results by ‘pushing’ the region boundary past shallow local minima caused by weak image
gradients. ‘Geometric’ or ‘geodesic’ active contours [57, 16, 17, 50] removed the parameterization
dependence of the early models by using as energy the length of the boundary in a non-Euclidean metric
onΩ determined by the image. Most of these energies were written as the integrals of functions over the
boundary of the region, but [18], [66], and [44], among others, introduced integrals of functions over the
interior to facilitate the description of region properties and to reduce sensitivity to noise and clutter.
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All the above energy functionals, both prior and data terms, are representable as algebraic combi-
nations of single integrals over the boundary of the region or over its interior. Such integrals represent
linear or twisted linearfunctionals on the spaces of 1-boundaries and 2-chains [13]. Chains are equiva-
lence classes of formal linear combinations of differentiable embeddings of rectangles,e.g.the interval
(1-chains) or the unit square (2-chains). ‘Boundaries’ in a generalized sense are then defined by the
action of a boundary operator∂ takingn-chains to(n−1)-chains. In the plane, 1-boundaries (1-chains
in the image of∂) are equivalent to closed 1-chains (those in the kernel of∂, and thus without boundary).
Consequently, we will reserve the term ‘boundary’ for the geometric boundary of a region, and use the
word ‘closed’ to indicate boundaries in this generalized sense.

The utility of these formal objects is to characterize properties of curves and curve functionals in
algebraic terms. A functional on chains is ‘linear’ in the standard sense: given a linear combination of
chainsαC1 + βC2, the value of the functional is given by the same linear combination of the values of
the two chains:

E(αC1 +βC2) = αE(C1)+βE(C2) . (2.10)

Note that by definition two embeddingsC1 andC2 with the same domainD represent the same chain
if C2 = C1ε, for some diffeomorphismε : D→ D. Functionals defined on the space of embeddings must
therefore be invariant under diffeomorphisms in order to project to well-defined functionals on chains.
This invariance requirement means that differential forms are the natural language in which to represent
such functionals. Linear functionals on 1-chains thus take the form

E(C) =
∫

∂R
A =

∫
domC

C∗A =
∫

dp~t(p) ·A , (2.11)

whereA is a 1-form onΩ; v ·A denotes the evaluation (‘inner product’) of the 1-formA on the vector
v; domC is the domain ofC; C∗ is pullback byC; p is a coordinate on domC, and~t(p) = C′(p) is the
tangent vector toC at p. Using the generalized Stokes theorem, such functionals can be rewritten as
integrals overR. Equally importantly, since in two dimensions every 2-form is closed and in the plane
every closed form is exact because the cohomology is trivial, the reverse is true. For every 2-formF
there exists a 1-formAF such thatF = dAF , meaning that every energy of the form

∫
RF , whereR is a

region, or more generally a 2-chain, can be rewritten as∫
R

F =
∫

R
dAF =

∫
∂R

AF . (2.12)

The area of the interior of a closed 1-chain provides one example of this process. In this case,F = ?gI,
whereI is the function identically equal to one everywhere. In an Euclidean metric, this becomes

E(C) =
1
2

∫
dp~t(p)×C(p) =

∫
dp

∂x
∂p

y(C(p)) , (2.13)

where(x,y) are Euclidean coordinates. In consequence of equation (2.12), linear energies of the form (2.11)
encompass all the forms of region energies in the literature. They are also used by [46] as part of a ‘ratio
energy’, and by [97] to find ‘flux maximizing flows’.

Rather than define twisted linear functionals in general, we simply give the form appropriate to our
context:

E(C) =
∫

domC
?C∗g C∗ f =

∫
dp |~t(p)|g f (C(p)) . (2.14)

whereg is a metric onΩ, and f is a function (0-form) onΩ. C∗g is therefore the metric on domC induced
byC; and?C∗g is the associated Hodge operator.|v|g is the norm of the vectorv in the metricg. The form
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of functional in equation (2.14) encompasses the remainder of the models mentioned above, including
geometric and geodesic active contours, and most others that have appeared in the literature. A particular
example is boundary length, in the metricg, which is given byf = I.

In the particular case of prior terms, much more can be said. Prior terms should be Euclidean
invariant in general. This forcesf to be constant,g to be Euclidean, andA to calculate the interior
area. Thus there are only two linear prior terms compatible with Euclidean invariance: length and area.

2.3.1.2 Shape modelling

The limitation of the functionals described above is that they incorporate only local interactions. In
the case of a finite-dimensional vector spaceX, this is clear. Linear functionalsx · a, x ∈ X, a ∈ X∗,
lead to exponential probability distributions, Pr(x|a) ∝ exp(−x · a). In any basis, this takes the form
exp(−∑i x

iai) = ∏i exp(−xiai). Thusxi and x j are independent for alli 6= j. The same is true in a
function space, where a linear functional is represented by the integral of the function against a measure,∫

dµ(p) f (p).
For linear functionals on the spaceC1(Ω) of 1-chains inΩ, the situation is similar, except that it is

important to realize that the equivalent of the indicesi or the pointsp in this case are the tangent vectors
~t(p). The situation for twisted linear functionals is complicated by the fact that the metric on domC
is induced by the embedding. The result is that the functional incorporates local interactions in the
sense of a function space, where local functionals may be integrals of derivatives of the function at each
point as well as of its value. This notion of locality is closely related to the property of Markovianity.
In the discrete case, the dependence on derivatives means that interactions take place within fixed size
neighbourhoods, as in a Markov random field. In addition, because the degree of the derivatives involved
is typically small, the neighbourhoods are small. Thus for equation (2.14), the interaction is between
‘neighbouring pairs’ of tangent vectors.

The result of this limitation is impoverished modelling, especially in the prior terms. Any two bound-
aries that share length and area are equiprobable from the point of view of these models. Looking at the
energy minima confirms this impression. It is well known that gradient descent using the length leads
to evolution by curvature and that this evolution moves the boundary towards a circle that then shrinks
and disappears. The limitation imposes itself equally on data terms, although there the lack of Euclidean
invariance allows a wider variety of terms.

In order to get around this limitation, various approaches have been taken to the incorporation of more
sophisticated information. This has usually been done within the second of the two frameworks outlined
in section2.3.1: the use of ana priori finite-dimensional space. [54] represent shapes as signed distance
functions, and use a Gaussian distribution on the principal components of variation around the mean
distance function acquired from training data as a shape prior. [25] modify the Mumford-Shah functional
to incorporate statistical shape knowledge. They use an explicit parameterization of the contour as a
closed spline curve, and learn a Gaussian probability distribution for the spline control point vectors. The
statistical prior restricts the contour deformations to the subspace of learned deformations. [67] propose
a functional that can account for the global and local shape properties of the target object. A prior shape
model is built using aligned training examples. A probabilistic framework uses the shape image and the
variability of shape deformations as unknown variables. They seek a global transformation and a level
set representation that maximizes the posterior probability given the prior shape model. [19] define an
energy functional depending on the gradient and the average shape of the target object. The prior shape
term evaluates the similarity of the shape of the contour (modulo scale, rotation and translation) to that
of the reference shape through the computation of a distance function using the Fast Marching method
of [80]. Finally, [33] define shape descriptors with Legendre moments and introduce a geometric prior
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in the framework of region-based active contours, with a quadratic distance function between the set of
moments of the contour and the set of moments of the reference object.

2.3.1.3 New models

What the above models have in common, is that they are looking for a single instance of a specific
shape in an image. Given one or more training examples, and a shape representation, a ‘mean’ shape
is computed. The evolution of the contour is then constrained by this ‘mean’ shape and the possible
deformations around this shape. This is effective in some circumstances, but these approaches rapidly
become restrictive if there are several instances of the shape to detect in the image, or if the regions to be
extracted cannot be defined as small variations around a ‘mean’ shape.

Consider the example of ‘networks’. These possess complex geometric properties in common (they
are composed of ‘arms’ of roughly parallel sides, perhaps of varying width, joined together in various
ways), but their variability cannot be reduced to perturbations of a template shape parameterized by a
few quantities. Nevertheless it is clearly important from a modelling point of view to incorporate the
geometrical properties that they share; what might be called their ‘family resemblance’.

With the aim of modelling such families, and of extending the expressive power of active contour
models more generally by introducing a coherent way to construct functionals of increasing complexity,
we propose a new class of active contour models. These generalize the linear models of section2.3.1.1
to higher-order polynomial energieson the space of 1-chains. These models describe arbitrarily long-
range interactions between subsets of points in the boundary: quadratic energies describe interactions
between pairs of points, cubic energies between triples, and so on. These interactions in their turn allow
the incorporation of non-trivial geometric information into prior terms, and in particular the description
of shape families such as networks. If used as data terms, they allow the description of more complex
relations between the region and the image.

The new energies require new minimization techniques. The basic methodology is still gradient
descent, but its implementation is significantly harder. Higher-order energies lead to non-local forces:
the speed of a point in the boundary depends on the whole of the boundary and not just on its infinitesimal
neighbourhood. The computation of the evolution thus involves integrals over the boundary. We use a
level set approach to the problem, and extend standard methods to handle non-local forces in a way
similar to, but necessarily more precise than, that used for incompressible flows.

In section2.3.2, we present higher-order active contour energies in detail. In section2.3.3, we
describe the extended level set method we use to minimize the energy. In section2.3.4, we introduce
image terms, apply a quadratic energy functional to the extraction of road networks, and present results
on real images. We conclude in section2.3.5.

2.3.2 Higher-order energies

The new models make use of the linear structure of the chain space, which allows us to go beyond linear
functionals to polynomial functionals in a clear and structured way. This can be thought of as a coherent
way of generating functionals of increasing complexity, or as the expansion of an arbitrary functional.
Such functionals have not been considered before, and their use constitutes a major generalization of the
active contour approach.

Since polynomials are sums of monomials, it is sufficient to construct these. A monomial function
of ordern on a vector spaceV is the composition of three maps:

V
∆n // Vn ⊗ // V⊗n E // R (2.15)
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where:∆n is the diagonal map fromV to its n-fold Cartesian productVn; ⊗ is the projection from this
latter space to then-fold tensor product ofV, V⊗n; andE is a linear functional on the latter. Note that
settingV = R gives normal monomials,axn, x∈ R. In our context,V = C1(Ω), the space of 1-chains in
Ω, and our task boils down to constructing linear functionalsE on tensor products ofC1(Ω) with itself.
Fortunately,C1(Ω)⊗n is a subspace ofCn(Ωn), the space ofn-chains inΩn, so that a linear functional
on the latter is also a linear functional on the former. Linear functionals on the latter are easy to create
however. One can proceed in several ways, one of which is analogous to equation (2.14), while another
is analogous to equation (2.11). We do not describe all the possibilities here for lack of space, but instead
focus on the latter. Given ann-form F onΩn, we pull it back to the domain ofC⊗n and integrate it, using
the analogue of equation (2.11):

E(C) =
∫

(∂R)n
F =

∫
(domC)n

(C⊗n)∗F . (2.16)

What is then required is ann-form onΩn. In what follows, we will focus on the quadratic case,n = 2,
both for clarity and because this is what we will use in the application later in the paper.

2.3.2.1 Quadratic energies

In the casen = 2, equation (2.16) becomes

E(C) =
∫

(∂R)2
F =

∫
(domC)2

(C⊗C)∗F . (2.17)

The product structures ofC⊗C and(domC)2 mean that this functional can always be written (in terms
of coordinates(p, p′) on (domC)2) as

E(C) =
∫ ∫

dp dp′~t(p) ·F(C(p),C(p′)) ·~t(p′) , (2.18)

whereF(x,x′), for each(x,x′) ∈Ω2, is a matrix. The operatorF allows us to model a non-trivial interac-
tion between different contour points. Note that this interaction is not Markov, even if the value ofF tends
to zero rapidly with increasing distance between its arguments. Since the interaction is mediated by the
embedding rather than the embedded space, interactions can occur between arbitrarily separated pieces
of the contour if they approach each other inΩ. Note also that the force derived from equation (2.17) is
non-local, the force at a point being determined by an integral over the contour.

For prior terms, when the 2-formF does not depend on the image, we require the energy to be
Euclidean invariant. This results in the form

E(C) = −
∫ ∫

dp dp′~t(p) ·~t(p′) Ψ(|C(p)−C(p′)|) , (2.19)

where|x− y| is the Euclidean distance between pointsx andy in Ω. The functionΨ weights the inter-
actions between different points of the curve according to their distance, and must be chosen carefully
since it defines the geometrical content of the model.Ψ can be chosen to tend to zero asx tends to
infinity, since adding a constant toΨ adds zero to the energy. It should also be chosen so that the integral
converges.

It is clear from equation (2.19) that even in the quadratic case, the use of higher-order energies
opens up a much wider range of modelling possibilities than previously possible. With linear energies,
only two prior terms existed; now there is a whole function space full. Note also that unlike the shape
models described in section2.3.1.2, the new energies incorporate Euclidean invariance naturally without
requiring the estimation of position or rotation, since they are not mixture models over these variables.
Note, however, that this does not constrain the minimum energy configurations to be Euclidean invariant,
although the set of such minima will be; the symmetry is ‘broken’ in general.
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Figure 2.6: The functionΨ

2.3.2.2 An example of a geometric quadratic energy

In this section, we study a particular case of an Euclidean invariant quadratic energy. We will use this
particular case later on to model road networks, but we use it here to illustrate the possibilities inherent
in higher-order energies.

The energy we choose takes the form

Eg(C) = L(C)+αA(C)−β
∫ ∫

dp dp′~t ·~t′ Ψ(R(p, p′)) , (2.20)

whereL is the length of the boundary in the Euclidean metric onΩ, an energy of the form (2.14); andA
is the area of its interior, an energy of the form (2.11). R(p, p′) = |C(p)−C(p′)| is the Euclidean distance
betweenC(p) andC(p′). The length term acts as a regularizer. The area term is introduced to control
the expansion of the region. The Euclidean invariant quadratic term, of the form (2.19), introduces the
interactions. We choose the following form for the functionΨ:

Ψ(x) =


1 if x < dmin− ε ,
0 if x > dmin + ε ,
1
2(1− x−dmin

ε − 1
π sin(πx−dmin

ε )) otherwise.

(2.21)

This function is shown in figure2.6, where the parametersdmin andε are also illustrated. A pointp on
the contour interacts with other points within a certain distancedmin + ε, measured inΩ. The function
Ψ is always positive, and so from equation (2.20), the quadratic part of the energy is a minimum when
the points interacting with one another have parallel tangent vectors. The quadratic energy thus favours
straight lines. On the other hand, for pairs of points with antiparallel tangent vectors, the quadratic part of
the energy is zero unless the points approach closer than a distance ofdmin + ε, when it starts to increase
rapidly. The quadratic energy therefore acts as a softened ‘hard-core’ potential, preventing the points
from approaching much closer thandmin.

The energy in equation (2.20) is minimized using gradient descent. Thus the contour evolution is
determined by

∂C
∂t

= −δE
δC

(C) , (2.22)

55



Evolution 1Evolution 2Evolution 3Evolution 4Evolution 5

Figure 2.7: Examples of gradient descent using the energy in equation (2.20). The first three
columns correspond to different values ofdmin, while the last two correspond to different values
of α.

whereδE/δC is the functional derivative ofE with respect toC.1 The resulting descent equation is then

n̂ ·Ċ(p) = −κ(p)−α+2β
∫

dp′ (R̂(p, p′) · n̂(p′)) Ψ′(R(p, p′)) , (2.23)

whereR̂(p, p′) = (C(p)−C(p′))/|C(p)−C(p′)|. The component of∂C/∂t along the normal has been
taken, movement along the tangent direction being equivalent to a diffeomorphism of the domain of
C, and thus irrelevant. The energy minima that result consist of elongated structures (‘arms’) of a fixed
minimum width that tend to elongate. The arms are mutually repulsive, so that they distribute themselves
over the domainΩ, and have a limited branching number.

Figure2.7shows examples of evolutions starting from a circle using equation (2.23). All the evolu-
tions show the formation of fingered structures with parallel-sided arms of constant width. The width is
controlled by the parameterdmin in theΨ function, and the first three rows of figure2.7show evolutions
for different values of this parameter (dmin = 3,5,7); the fingers formed are indeed of the correct width.
The last two rows illustrate the role of the parameterα. In the fourth row,α = 0.05, whileα = 0.1 in
the fifth row. The larger the value ofα, the fewer the number of arms that form at the beginning of the
evolution.

The growth away from a circle towards a labyrinthine structure with elongated ‘arms’ can be under-
stood as follows. A linear analysis of the stability of the circle to small sinusoidal perturbations shows
that above a certain angular wavelength, the perturbations, rather than being damped back to zero, are

1Note that strictly speaking,δE/δC are the components of a 1-form on the space of boundaries, and that to
generate a gradient we should map it to the tangent bundle using a metric. By using it as is, we are effectively
assuming that the metric on the space of boundaries is Euclidean in the point basis; this is common practice. The
choice of a metric is difficult; there are good arguments for saying that it should be determined nota priori, but by
the measurements we intend to make, that is, by the likelihood in Bayes’ theorem [45].
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amplified, their size and their spatial frequency around the initial circle being controlled by theΨ func-
tion. Thus instead of smoothing all irregularities, as in the linear case, this energy allows some of them
to develop, and hence encourages complex shapes. An uncontrollable instability at all frequencies is
prevented by the fact that the ‘bumps’ corresponding to two peaks in the sinusoid cannot approach closer
thandmin. Once created, the bumps elongate into arms with parallel sides, thus decreasing the energy,
although this nonlinear behaviour can no longer be described within the linear approximation used to
study stability. In an infinite domain it seems likely that the energy is not bounded below, and that the
arms will continue to grow and to ramify indefinitely. In a finite domain such as an image, this cannot
happen due to the repulsion between the arms.

The experiments serve to illustrate the greater complexity of information contained within quadratic
energies as compared to linear energies, and to show that the specific energy in equation (2.20) is well-
suited to modelling network structures.

2.3.3 Minimization of the energy

It is important to realize that although the linear space of chains is useful for constructing and describing
functionals, the minimization of the energy takes place not over the space of (closed) 1-chains, but over
the space of region boundaries.

In order to minimize the energy, we use gradient descent, evolving the contour using the level set
framework introduced by [64]. Level set representations handle changes of topology naturally, are pa-
rameter free, and allow the simple expression of geometrical quantities like curvature. Instead of evolving
the contour itself, a function of higher dimensionφ is used to represent the contour, and the function is
evolved. The representing functionφ is defined as the signed distance function to the contourC:

φ(x) =±d(x,C) , (2.24)

where the plus (minus) sign is chosen if the pointx lies inside (outside) the contour. The inverse of this
map from contours to functions is

C = {x|φ(x) = 0} . (2.25)

Supposing that the contour changes with timet, differentiating the defining equation forφ gives

φ(C(p, t), t) = 0⇒ ∇φ|(C(p,t),t) ·
∂C
∂t

(p, t)+
∂φ
∂t

∣∣∣∣
(C(p,t),t)

= 0 . (2.26)

If the contour propagates along the outward normal direction with speedF , i.e. n̂ ·Ċ(p) = F [C](p),
then the level set function on the contour must obey

φ̇ = −∇φ ·F n̂ = F∇φ ·∇φ/|∇φ|= F |∇φ| . (2.27)

Note that in principle, the rest ofφ should evolve as given in equation (2.24). In practice however, since
the exact evolution ofφ away from the contour is of no consequence, other recipes are used. In particular,
it is possible to apply the expression forF to each level set, and evolve the functionφ accordingly,
reinitializing if necessary to maintain equation (2.24).

As can be seen from equation (2.23), the evolution equations derived from quadratic energies contain
nonlocal terms, and this creates new difficulties. Following the procedure of applying the expression for
F to every level set is impractical, since it means extracting the level set belonging to each point of the
discretized version ofΩ and integrating over it. In order to construct the speed at all points ofΩ, we
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Figure 2.8: The four evolution steps. Top-left, step (1): (re)initialization; top-right, step (2):
contour extraction and computation of the speed on-contour; bottom-left, step (3): extension of
the speed to the Narrow Band; bottom-right, step (4): evolution ofφ.

therefore use the technique of ‘extension velocities’ [1]. This leaves the problem of calculating the speed
on the zero level set. To do this, we first extract the zero level set using ENO interpolation [82] and
contour tracing [68], and then compute the speed using numerical integration over the contour. The level
set function is thus evolved in four steps. Firstφ is (re)initialized, then the zero level set is extracted and
the speed computed. The speed is then extended from the zero level set toΩ, and finallyφ is updated.
Figure2.8depicts the four steps. In the next few subsections, we describe these steps in more detail.

2.3.3.1 (Re)initialization

In order to (re)initializeφ as a signed distance function, we use the approach described by [91], where
the PDE

φ(p,0) = φ0 ,

φt = sign(φ0) (1−|∇φ|) (2.28)

is solved for this purpose. We found, however, that the zero level set moved during the numerical solution
of this equation, an effect which manifested itself as a loss of area when we attempted to simulate an
area-preserving flow for example. This is a recognized problem, to which [90] have proposed a solution.
A local area conservation constraint is imposed by modifying equation (2.28) in each cellΩi j of Ω to

φt = sign(φ0) (1−|∇φ|)+λi j H
′(φ)|∇φ| , (2.29)

where

λi j =
−

∫
Ωi j

H ′(φ)sign(φ0) (1−|∇φ|)∫
Ωi j

H ′(φ)2|∇φ|
. (2.30)
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The initial condition for equation (2.29) is the current value ofφ, except for the initialization of the
evolution, whenφ is set to+1 inside the contour and−1 outside.

2.3.3.2 Contour extraction and computation ofF on the contour

In order to compute accurately the speedF on the zero level set, we first locate the intersections of this
set with the discrete grid using Essentially Non Oscillatory (ENO) interpolation [82], as described in
table2.3.3.2.

Table 2.5: ENO interpolation algorithm.

1. Construction of a first-order polynomialPf ,1
j+1(x) and initialization

of the first window for the pointj (l = 1):

Pf ,l
j+1/2(x) = f [x j ]+ f [x j ,x j+1](x−x j)

kl
min = j

2. l = l +1.

3. If Pf ,l−1
j+1 (x) andkl−1

min are defined:

Pf ,l
j+1/2(x) = Pf ,l−1

j+1/2(x)+cl ∏
i=kl−1

min+l−1

i=kl−1
min

(x−x j)

where

cl =
{

bl si |al | ≥ |bl |
al sinon

kl
min =

{
kl−1

min−1 si |al | ≥ |bl |
kl−1

min sinon
and

al = f [xkl−1
min

, · · · ,xkl−1
min+l ]

bl = f [xkl−1
min−1, · · · ,xkl−1

min+l−1]

f[...] represents the Newton divided differences.

After interpolation, the boundary is extracted using the contour tracing algorithm shown in ta-
ble 2.7 [68]. At each step, we start from the current point and consider six possible directions for the
next point. These directions are adapted to the different possible configurations, as shown in figure2.9.
We obtain an ordered set of points{C(pi); i = 1, . . . ,n} representing the boundary.

In fact, the situation is a little more complicated than this, because some configuration are ambiguous,
as illustrated in the bottom part of figure2.9. To deal with these, it is necessary to adopt a convention:
either the interior or the exterior, but not both, can have subcellular width. We choose the former.
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Table 2.6: Newton divided differences.

f [x j ] = f (x j)

f [x j ,x j+1] = f [x j+1]− f [x j ]
x j+1−x j

f [x j , · · · ,x j+2] = f [x j+1,x j+2]− f [x j ,x j+1]
x j+2−x j

f [x j , · · · ,x j+k] = f [x j+1,··· ,x j+k]− f [x j ,··· ,x j+k−1]
x j+k−x j

Table 2.7: Tracing algorithm.

1. Choose a starting pointA in a set of pointsR. Set current pointC = A and search direction
S= 6.
2. WhileC is different fromA or first= 1, do steps 3 to 9.
3. found= 0.
4. While found= 0, do steps 5 to 8, at most 3 times.
5. If B, the neighbour(S−1) of C is in R; C = B, S= S−2, found= 1.
6. Else, ifB, the neighbourSof C is in R, C = B andfound= 1.
7. Else, ifB, the neighbour(S+1) of C is in R, C = B andfound= 1.
8. ElseS= S+2.
9. first= 0.

60



7

C

5

2

6

3 1

04 7

4 0

C

6

2

3

5

1

3−

5+

3+

5− 7+

7−

4 0C

2

6

1+

1−

φ>0

φ>0φ<0

φ<0

Figure 2.9: Top: the three configurations encountered in the contour tracing algorithm. Bottom:
an ambiguous configuration.

Having extracted the boundary, and after interpolating the necessary values from the grid, we com-
pute the speedF for each extracted point by performing a numerical integration over the contour.

2.3.3.3 Computation ofF on all points of the domain

The speed is needed for all points ofΩ. As mentioned at the beginning of this section, in order to do this
efficiently, we use the method of ‘extension velocities’, as proposed by [1]. To initialize the process, the
grid points closest to the extracted boundary inherit the speed of the closest extracted boundary point.
We then solve the PDE

Fτ +sign(φ)
∇φ
|∇φ|

·∇F = 0 .

The solution of this equation satisfies∇φ ·∇F = 0, which means that the variation ofF along the
normal to the level sets is null. Thus every level set evolves with the same speed, and the distance
between each level set is preserved in principle.

2.3.3.4 Evolution ofφ

In practice, it is not necessary to compute the evolution of the level set function over the whole ofΩ.
Computational efficiency can be increased by restricting computation to a band around the zero level set,
known as the ‘Narrow Band’ [81], defined byφ(x,y) < t, wheret is a threshold. When the zero level set
comes too close to the edge of the Narrow Band, the level set function is reinitialized as described above,
and the Narrow Band is reconstructed.
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2.3.4 Application: line network extraction

Automatic detection of line networks, and especially of road networks, in satellite and aerial imagery has
been studied for the last fifteen years at least. Motivated by the increasing rate of data acquisition and the
growing importance of geographic information systems, a wide variety of methods have been developed
to attack this problem. Despite all this attention, extraction of line networks remains a challenge because
of the great variability of the objects concerned, and the consequent difficulty in their characterization.
The intensity of a road can vary significantly from one road to another, for example, while the presence
of trees and buildings (‘geometric noise’) in high resolution data can obscure the network; junctions can
be highly complex; networks do not possess exactly the same properties in rural and urban areas; and so
on.

We can distinguish different categories of methods for detecting line networks. Some aim at extract-
ing the network as a one-dimensional object, whereas others extract the network as a region. In addition,
methods may restrict the network topologies that can be found. The first category includes methods for
finding the optimal path between two endpoints, either defined by the user or found automatically. [30],
for example, combine the results of applying several specially designed operators into an array of costs
inversely related to the likelihood of the presence of a road, and then find an optimal path through this ar-
ray. [59] define a path cost depending on the contrast, grey-level and curvature along a path between two
endpoints, and then minimize the cost using dynamic programming. [37] propose a tree search method
for road tracking based on reducing as much as possible the uncertainty in the road position. [95] first
generate a number of candidate line segments using two different line detectors. The segments are then
connected together using a Markov random field defined on a graph with vertices the segments, thus
allowing more complex topologies. [88] and [52] model thin networks, including roads, as ensembles
of line segments embedded in the image domain. Marked point processes (with line segments as marks)
control network parameters such as connectivity and curvature via interactions between the segments.

All these methods find a connected set of points or segments, but do not extract the borders of the
road (although this is certainly possible with marked point processes). With increase of image resolution,
the width of networks in images can become significant, and it then makes more sense to consider
the network as a region. Methods have been proposed that specifically take into account the width
of the roads to be extracted. [5] propose an automatic approach that first finds MAP estimates of the
road configuration in small windows using dynamic programming, and then combines these window
estimates, again using dynamic programming. The model used explicitly includes the road borders.
[62] introduce ‘ziplock snakes’. From an initial and a final point, forces derived from the image are
progressively used to adjust the position of the active contour. The endpoints are positioned on either
side of the road, and both borders of the road are extracted, but the topology is limited to linear structures.
[34] and [53] model roads using ‘ribbon snakes’, active contours with a certain width associated to each
point, again extracting linear structures. The method we propose lies in this second category: we extract
the network as a region of arbitrary topology.

2.3.4.1 Proposed model

The model has to take into account two fundamental aspects of the entity to be detected: the geometry
and the radiometry, corresponding to prior and likelihood terms. The energy thus contains two parts:

E(C) = Eg(C)+λEi(C) , (2.31)

whereλ balances the contributions of the geometric partEg and the data partEi . The geometric partEg

is given by equation (2.20), and is described in section2.3.2.2.
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Figure 2.10: The two configurations favoured by the quadratic image term.

The image partEi is composed of two terms:

Ei(C) =
∫

∂R
?dI−

∫
(∂R)2

(Ψ◦R)(dI ?dI′)

=
∫

dp n̂ ·∇I −
∫ ∫

dp dp′~t ·~t′ (∇I ·∇I ′) Ψ(R(p, p′)) , (2.32)

where we use primed and unprimed variables to designate quantities evaluated at pointsp (or C(p)) and
p′ (or C(p′)) respectively. The first, linear term has the form (2.11), while the quadratic term takes the
general form (2.17).

The linear term favours situations in which the outward normal is opposed to the image gradient, or
in other words, in which the road is lighter than its environment. When this is the case, it also favours
larger gradients under the contour. The second term is an example of a quadratic data term: it describes
a relation between the contour and the data that cannot be incorporated into a linear functional. Its effect
is to favour the two situations illustrated in figure2.10. First, it favours configurations in which pairs
of points whose tangent vectors are parallel and that are not too distant from each other (i.e. points on
the same side of a road) lie on image gradients that point in the same direction and are large. Second,
it favours configurations in which pairs of points whose tangent vectors are antiparallel (i.e. points on
opposite sides of a road) lie on image gradients that point in opposite directions and are large. This latter
is important, as it allows the model to capture thejoint behaviour exhibited by the opposing sides of a
road.

The energy in equation (2.31) is minimized using gradient descent implemented via level sets as
described in section2.3.3. The resulting descent equation is

n̂ · ∂C
∂t

= −κ−λ∇2I −α+2λ
∫

dp′ (∇I ′ ·∇∇I · n̂′) Ψ(R(p, p′))

+ 2
∫

dp′ (R̂ · n̂′)(β+λ∇I ·∇I ′) Ψ′(R(p, p′)) . (2.33)

2.3.4.2 Experimental results

We tested the above model on real satellite and aerial images. Two such images are shown in the first
column of figure2.11. The images present several difficulties. There are regions of high gradient cor-
responding to the borders of fields rather than to roads, and fields also exhibit parallel sides. In the first
image, there is a discontinuity in the road. The gradient descent procedure and results are shown in the
second to fifth columns of figure2.11. In both images, the roads are perfectly extracted.
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Figure 2.11: Gradient descent on the two SPOT satellite images in the first column.

Figure2.12shows another result on a larger, more complex piece of the same satellite image. The
result is not perfect but very encouraging. We are able to detect both straight and ‘windy’ portions of the
network, and areas where the road width varies significantly.

The data term, although it takes into account some aspects of the appearance of road networks in
images, can nevertheless be improved. For instance, isolated edges are occasionally detected. In the next
section, we add another image term to our model, more specific to the radiometry of a line network.

2.3.4.3 A more specific image term

Consider a functionG onΩ that is representative of the entity to detect, in our case the line network. For
instance, it could be the log probability that each point ofΩ belongs to the network. Then one can define
the following energy of the form (2.11) and (2.12):

E(C) = −
∫

R
?G =−

∫
∂R

AG =−
∫

domC
C∗AG , (2.34)

wheredAG = ?G. The functional derivative is given by

δE
δC(p)

= G(C(p))n̂(p) . (2.35)

In the following subsections, we describe two ways of constructing a suitable functionG. The first
method uses oriented filtering, whereas the second uses hypothesis tests.

Oriented filtering Define the function

Fθ = (v̂θ ·∇)2Nσ ,

whereNσ is a rotationally symmetric Gaussian with standard deviationσ, and v̂θ is the unit vector in
directionθ. ThenG is given by

G(x) = Q(min
θ∈Θ

(Fθ ∗ I(x))) ,
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Figure 2.12: Result on a larger piece of the SPOT image.
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Figure 2.13: Mask for Student tests.

where∗ indicates convolution. The rotations are chosen from the setΘ =
{

0, π
8 , . . . , 7π

8

}
. The function

Q maps the values into the interval[−1,1]:

Q(x) =


1 if x < s1 ,
1−2 x−s1

s2−s1
if s1 ≤ x≤ s2 ,

−1 if x > s2 ,

(2.36)

wheres1 ands2 are two thresholds, chosen empirically.

Hypothesis tests [52] used Student t-tests for line network detection. Here we adapt their approach
to our context. We suppose that roads are homogeneous and contrasted with respect to their environment.
A t-test on sets of pixels from inside a potential road will test the homogeneity criterion, while a t-test on
sets of pixels from inside and outside a potential road will test the contrast criterion. In order to compute
the test, we use the mask shown in figure2.13.

The Student t-test computes

t-test(x,y) =
|x̄− ȳ|√

σx
nx

+ σy

ny

,
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Figure 2.14: Aerial image. (Imagec©IGN.)

where ¯·, σ andn represent respectively the mean, the standard deviation, and the number of observations.
When the result of the test is above a certain threshold, we can consider that the two sets of pixels belong
to different populations (implicitly, Gaussian with different means and variances). Given a mask location
and orientation,(x,θ), we test the homogeneity and contrast criteria by computing the quantity

Tθ(x) = Q

(
H2(S)

min{1,H1(S)}

)
.

where

H1(S) = max
j,k∈{1,...,nb}, j 6=k

[t-test(b j ,bk)]

H2(S) = min
l∈{1,2}

[t-test(Rl ,S)] .

The functionG is then defined by

θmax(x) = argmax
θ∈Θ

|Tθ(x)|

G(x) = Tθmax(x)(x) .

2.3.4.4 Experimental results

We add this new energy (2.34) to the model (2.31), and test the model on the high-resolution aerial
image shown in figure2.14. The image presents several difficulties because of high gradients that do
not correspond to sides of roads and because of occlusions due to the presence of trees next to the road
network. We obtain two extraction results corresponding to the two functionsG above. The results are
similar, and are shown in figure2.15.

The main part of the network is extracted, and field borders and other geometric noise are eliminated.
In the top-right in one result, a road encircling a house is extracted as a solid area. This happens because
‘holes’ cannot form in the centre of a region with the current formulation. The main problem, however, is
that occlusions due to trees disrupt the network. We are currently addressing this issue using a quadratic
energy that causes two road ‘tips’ to attract one another, and thus close such gaps.
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Figure 2.15: Results of extraction with the two functionsG.

2.3.4.5 Initialization

Initialization is an issue for many algorithms, and in particular for gradient descent methods. The re-
sults may depend heavily on the initialization chosen, and indeed a number of the methods used for the
detection of roads rely on an initialization very close to the network. In all the results shown, however,
the region used to initialize the gradient descent was chosen to be a rounded rectangle lying just inside
Ω. This is possible because greater specificity in the model eliminates many candidate contours from
consideration, removing local minima and allowing the boundary to avoid being trapped as easily. In all
experiments, the gradient descent was run until it converged.

2.3.5 Conclusions

We have introduced a new class of active contour energy functionals. These energies are polynomial on
the space of 1-chains, in contrast to classical energies, which are linear. The new energies enable the
introduction of arbitrarily long-range interactions between sets of contour points, and thus the incorpo-
ration of sophisticated geometric information, in the sense that the energy minima are not circles but
families of complex shapes. We studied a particular form of quadratic energy whose minima consist of
fingered structures with parallel sides. Using this energy as a base, we designed an energy functional
for the detection of roads in satellite and aerial imagery and tested it on real data. Simulations prove
the efficiency of the model and illustrate the effect of the incorporation of non-trivial geometrical inter-
actions between points of the contour. Algorithmically, these models presented new challenges also, in
particular the need for a maximum of precision in the calculation of the speed and the evolution of the
contour.

Our immediate future work is focused on the solution of the problems mentioned in connection with
figure2.14, where occlusions disrupted the network. We have designed a quadratic ‘gap closure’ force
that overcomes the repulsion introduced by the existing quadratic term in certain circumstances, leading
road ‘tips’ to attract one another and fill in gaps in the network, something that is impossible using
classical techniques. Incorporating such a force into an energy framework is challenging, as it involves
higher-order derivatives that create numerical difficulties. We are currently working on resolving these.

Many open questions and research directions remain to be explored: higher-than-quadratic function-
als; the extension to surfaces; a probabilistic formulation; parameter and model estimation; new level
set techniques; improving computational efficiency; and applications to other domains, in particular to
medical imagery.

67



2.4 Index structures for image search by content

Author: Valérie Gouet, INRIA-Imedia / CEDRIC-Vertigo

In applications involving multimedia databases, similarity queries are very important. This type of
query consists in searching for all objects in the database which are similar to a given object. The ap-
proaches which are currently used to solve similarity search problems are mostly feature-based solutions.
The basic idea is to extract characteristic features from the multimedia objects, map them into a high-
dimensional feature space and search, in this space, objects with feature vectors similar to a query one.
For example, when dealing with image retrieval, the content of an image can be described by a feature
vector which can be a color histogram [14] or a shape descriptor [58], or by several feature vectors like
approaches based on points of interest [38] or on regions of interest [29].

For an efficient similarity search, it is necessary to store the feature vectors in a high-dimensional
index structure. Such structures must efficiently support the different kinds of queries that may be en-
countered in multimedia databases: (a)Point queries, which consist in finding in the database the points
that are identical to the query one; (b)Range queries, which involve similarity measures often called
ε− similarity. Here the searched objects have a similarity to a given object below a given thresholdε;
(c)Nearest neighbor queries, which involve similarity measures often calledNN− similarity. Here the
interesting objects are the ones which are the most similar with respect to the searched object.k-NN
queriesrefer to the firstk objects the most similar.

Effects in high-dimensional spaces: the "curse of dimensionality"

Some non-intuitive mathematical effects can be observed when the dimensionality of the data space in-
creases. Generally speaking, the problem is that important parameters such as volumes and area depend
exponentially on the dimensions of the space. For example, the volume of a hypercube grows exponen-
tially with increasing dimension and constant length edge. It produces effects concerning the shape and
location of the index partitions. For example, a typical index partition in high-dimensional space will
span the majority of the data space in most dimensions and only be split in a few dimensions. Another
point is that assuming uniformity, a reasonable range query corresponds to a hypercube having a huge
extension in each dimension. For more precisions and demonstrations, the reader can consult the survey
[12].

2.4.1 Tree-based approaches

Such approaches are based on the principle of hierarchical clustering of the data space. They structurally
come from the B+-tree structure [7, 23]. The feature vectors are stored in data nodes such that spatially
adjacent vectors are likely to reside in the same node. The high-dimensional access methods are mainly
designed for secondary storage. Consequently, the encountered approaches consist in determining the
data nodes such that they fit exactly into the pages of secondary storage. Moreover, for efficient query
processing, it is important that the data are well clustered into the pages. A page region is assigned to
each page, it is a subset of the feature space. such regions depend on the index structures. We briefly
revisit here the most important approaches based on trees for multi-dimensional indexing:

The R-tree family. 2 R-trees [39] have been originally been designed for spatial databases, i.e. for the
management of 2-dimensional objects. This class of approach uses bounding rectangles as page

2R-tree for Rectangle tree.
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regions. They represent multidimensional intervals of feature space and are minimal approxima-
tions of the enclosed clusters of points. Such a space partitioning is neither complete nor disjoint.
The R+-tree [89, 79] is an overlap free variant of the R-tree. The split algorithm guarantees
no overlap by using a forced-split strategy. The R∗-tree [8] is an extension of the R-tree where
several optimizations have been proposed, the most known one consisting in minimizing overlap
between page regions. The R-tree and R∗-tree have been also used for high-dimensional index-
ing. However, studies [11, 101] have shown a deterioration of the performances of the R∗-tree for
high-dimensional spaces, due to overlap which increases with such dimensions.

The X-tree. 3 This approach [11] is an extension of the R∗-tree, which is designed for the management
of high-dimensional objects. It extends the R∗-tree by two concepts: overlap-free split according
to a split history and supernodes with an enlarged page capacity.

The SS-tree. 4 This approach [101] uses spheres as page regions instead of rectangles. Here the spheres
do not correspond to minimum bounding spheres: the centroid of the data is used as center and
the minimum radius is chosen such that all clustered objects are included in the sphere. Spheres
are theoretically superior to volume-equivalent bounding rectangles because the corresponding
Minkowski sum (which expresses the selectivity of a bounding volume [12]) is smaller. But the
problems of spheres is that it is difficult to design an overlap-free split and that bounding rectangles
have a smaller volume in high-dimensional spaces. In conclusion, the SS-tree outperforms the R∗-
tree but does not reach the performance of the X-tree.

The SR-tree. 5 This structure [49] can be viewed as a combination of the R∗-tree and the SS-tree. Page
regions are built by considering intersections of rectangles and spheres. The motivation for using
such a combination is that spheres are better suited for processing nearest neighbor queries and
range queries using aL2 metric. On the other hand, spheres are difficult to produce much overlap in
splitting. A combination of these two primitives may overcome both disadvantages. The reported
performance results show that the SR-tree outperforms the SS-tree and R∗-tree structures, but no
evaluation has been done with the X-tree.

The M-tree. 6 This approach [20] is one of the first that also try to reduce the CPU cost of distance
computations. It can be applied on any metric space. The basic structure of the M-tree is similar
to the R-tree one. It uses the triangular inequality principle and some pre-computed distances to
reduce the number of distances to compute during the search. Its relevance depends on the cost
ratio between a distance computation and distances comparison [15].

2.4.2 Other approaches

We revisit here new approaches for efficient database access. On the contrary of the ones described below,
most of them have been developed with the aim of taking the problems associated to high-dimensional
spaces into account.

Space Filling Curves. Many variants exist for space filling curves, like Z-ordering [60, 63], Hilbert
Curve [43, 47] or Gray Codes [28]. For an overview, see [73]. These approaches are mappings
from a d-dimensional data space into a one-dimensional data space. Distances are not exactly

3X-tree for eXtended Node tree.
4SS-tree for Similarity Search tree.
5SR-tree for Sphere Rectangle tree.
6M-tree for Metric tree.
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preserved but points that are close to each other in the original space, are likely to be close to each
other in the embedded space. Therefore, these mappings are called distance-preserving mappings.

The Pyramid-tree. This technique [10] can be considered as an index structure that maps d-dimensional
point into a one-dimensional space and uses a B+-tree to index the embedded space. The parti-
tioning strategy is optimized for range queries on high-dimensional spaces. Its main advantage is
to generate a number of cells that grows linearly with the dimensions, instead of exponentially as
with the traditional approaches.

The VA-File. 7 The VA-File technique [100] is not an index structure, but a compression technique.
The authors suggest to accelerate a sequential scan by the use of data compression. The basic
idea consists in filtering the data by considering a quantized version of the feature vectors during
the search. The quantized points are loaded in memory and are sequentially scanned during the
search. Candidates which cannot be pruned are refined, i.e. their exact coordinates are called from
the disk.

2.5 CBIR with SVM using kernels with compact support

Author: Hichem Sahbi, INRIA-IMEDIA

2.5.1 Coarse-to-fine image classification

Many large scale classification problems suffer from the computational overhead due to the huge amount
of data to be processed and the need to achieve high precision at the detriment of using complex clas-
sifiers. Object detection is one of these applications, which has been widely investigated during the last
three decades (see for instance [72, 76, 98, 31]) but at this time, there is as yet no solutions with perfor-
mances comparable to humans’ both in precision and speed. High precision is now technically achieved
by building systems which learn from lots of data in order to reduce test errors. In most cases, the in-
crease in precision is achieved at the expense of a degradation in run-time performance and in major
applications high precision is demanded, so dealing with computation to reduce processing time is now
a problem with hard constraints.

Recent studies started to address this issue and introduced alternatives for specific applications,
for instancecoarse-to-fineprocessing. Indeed, many problems in computer vision have been solved
efficiently using coarse-to-fine processing such as object detection, filtering, edge detection, motion
estimation, image registration, matching, compression, noise reduction, binocular disparity estimation
[36, 6, 2, 71, 83] and in other close areas like speech processing [27]. In object detection, this approach
proceeds by rapidly focusing on a particular targeted object in a scene using some statistically common
characteristics (global appearance, generic pose constraints, etc.) and by considering that the major part
of the scene contains background dominant information which may be rejected quickly.

In the context of face detection, Fleuret and Geman [31] developed a fast and coarse-to-fine face de-
tector based on simple edge configurations and a hierarchical training platform. Their approach considers
a nested family of classifiers each one trained on a population of faces with particular pose constraints
in order to achieve a negligible miss-detection rate. For a given scene, simple and uniform structures are

7VA-File for Vector Approximation File.
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rejected using few tests in the hierarchy while more complex and rare structures, for instance textured ar-
eas, require more processing. Consequently, the overall average cost to process a scene was dramatically
reduced. Using the same idea, Viola and Jones [98] proposed a real-time and accurate face detection
algorithm. The main strengths of this algorithm were the use of a new image representation referred to
as the integral image, in order to reduce the overhead due to computing the response of wavelet filters,
combined with a cascade of classifiers in order to speedup the global face classifier.

Sahbi et al [75, 74] introduced a new computational model for object detection and scene interpre-
tation based a tree-structured network of support vector machines (SVM). This model makes it possible
to design a hierarchy of classifiers in order to minimize the overall computational cost of classification
under the fact that the a priori distribution of a particular object versus background is unbalanced. For
large size classification problems such as face detection, the design of the hierarchical detector, ensures
fast processing of most of the dominant patterns (such as background) using cheap SVMs, and fine pro-
cessing only in the areas containing rare patterns (faces) and similar structures using more expensive and
accurate SVMs, thereby resulting in an efficient classifier.

In [41], the authors introduced a method to speed-up object classification that uses support vector
machines. At the top of their hierarchy, the authors use a simple and fast linear classifier which analyzes
the whole image and rejects quickly large parts of the background. At other levels, slow but more
accurate linear classifiers are used in order to perform the final detection. The authors apply feature
reduction to the top level classifiers by choosing relevant image features according to a measure derived
from statistical learning theory. This makes it possible to speedup these classifiers. In [70], the authors
used a cascade of SVMs in order to speedup face detection. The cost of the SVMs (defined as the number
of support vectors) is constrained to increase throughout different steps of the cascade. First, a complex
SVM classifier is trained by solving a classical quadratic programming problem, then each classifier in
the cascade is built using the reduced set technique [77]. Again, the major part of a scene is rejected
using cheap classifiers at the early stages of the cascade while face and face-like structures are classified
using more steps. In their work, [71] make their face detector more flexible and rapid using coarse-to-
fine and this by training a coarse neural network classifier which detects faces whose locations are given
into a 10×10 pixel block. Thus, this detector can be moved in steps of 10 pixels across the image, and
still detects all faces present within these tolerances. [71] use also a finer neural network classifier in
the regions of 10×10 pixels for which the coarse detector responds positively. To reduce the effort of
scanning these 10×10 blocks, the author trains a neural network which returns the coordinates of the
candidate face inside a given 10×10 block. These coordinates are used to extract the face window and
to validate the face hypothesis using a fine classifier.

2.6 CBIR using decision-theoretic approaches

Authors: Simon Wilson and Georgios Stefanou, Trinity College

2.6.1 Introduction

In the previous deliverables we have described our extensions to the Bayesian content based image
retrieval (CBIR) systemPicHunterof [24]. In this short report we discuss how the Bayesian paradigm
may be extended to another aspect of the relevance feedback process, namely the decision as to which
images to display at each iteration. This is a decision problem, and as such it is to be solved within the
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Bayesian paradigm by the methods of decision theory.
This report is organised as follows. In Section2.6.2we describe the Bayesian learning algorithm for

CBIR. In Section2.6.3we describe the decision theory solution to the display strategy problem. Section
2.6.4concludes with some examples.

2.6.2 A Brief Description of a Bayesian CBIR system

Our approach is an extension of [24]. We consider a database of imagesI = {T1, . . . ,TN}. The objective
is to determine the “target” imageT ∈ I that the user requires.T could be a specific known image in
the database or more generally that image inI which best satisfies the user’s subjective search criteria.
The determination ofT is accomplished by displaying a set ofND images fromI , from which the user
picks one that best satisfies what is being looked for. The system uses this information to select another
image set, from which the user picks one, and so on. We defineDi ⊆ I to be the set of displayed images
at theith iteration of this process, andAi ∈ Di to be the image picked, also known as the user action. We
defineHt = {D1,A1,D2,A2, . . . ,Dt ,At} to be the history of displayed images and user actions up to the
tth iteration.

The learning algorithm is based around the user model for the probability of which image a user
picks fromDk:

P(Ak |Dk,T = Ti ,σ,F) =
exp(−dF(Ak,Ti)/σ)

∑Tj∈Dk
exp(−dF(Tj ,Ti)/σ)

, (2.37)

whereσ is a precision parameter anddF is a normalised distance measure in the set of image features
F . In this case we have 3 sets of features: global colour, texture and segmentation features, soF ∈
{GC, TX, SG}.

The unknowns areT, the precision parameterσ and the feature setF . Given Ht , our knowledge
about these unknowns is given by the posterior distribution:

P(T,σ,F |Ht) ∝

(
t

∏
k=1

P(Ak |Dk,T,σ,F)

)
P(T)P(σ)P(F), (2.38)

whereP(T), P(σ) andP(F) are prior distributions that we assume are uniform:P(T = Ti) = N−1, i =
1, . . . ,N, P(σ) = 1,0≤ σ≤ 1 andP(F) = 1/3,F ∈ {GC,TX,SG}.

Of interest in this report is the marginal posterior distribution ofT:

P(T = Ti |Ht) =
∫ 1

0
∑

F∈{GC,TX,SG}
P(Ti ,σ,F |Ht), i = 1, . . . ,N. (2.39)

2.6.3 Deciding the Next Display Set Dt+1

The question that this report addresses is the following. Based onP(T = Ti |Ht), which set of images
Dt+1 should be displayed next? This is a decision problem — we must decide which subset ofI of size
ND to display — and within the Bayesian paradigm, such problems are solved by decision theory.

We define a utilityU(D,T) that is the “worth” of picking the setD to display when the target image
is T. SinceT is unknown, we compute for each possibleD the expected utility with respect toP(T =
Ti |Ht):

U(D) =
N

∑
i=1

U(D,Ti)P(T = Ti |Ht). (2.40)
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The optimal set to display is thatD which maximises expected utility:

Dt+1 = arg max
D⊆I
|D|=ND

U(D). (2.41)

2.6.3.1 The Most Probable Display Scheme

The most obvious display scheme is to display thoseND images with the highest posterior probability.
We observe that if we define

UI (D,T) =
{

1, if T ∈ D,
0, otherwise,

then
UI (D) = ∑

Ti∈D

P(T = Ti |Ht)

which is clearly maximised by those images with highest probability. We call this the indicator utility.

2.6.3.2 Other Display Strategies

A property of the most probable display scheme is that it tends to quickly display images in a small
region of the feature space, clustered about the user actions, and ignores all images outside it. While
this may be ultimately what is needed during a query, it may be more worthwhile to display images that
maximise information to the system, at least in the early stages of the query process. We propose 2
utilities to model this idea.

Variance Utility We display a set of images that are widely dispersed in feature space. We can use
the variance of the distances between images inD andT to define a measure of dispersion, thus

UV(D,T) =
1

ND−1 ∑
Ti∈D

(d(Ti ,T)−d)2,

whered(Ti ,T) is a normalised distance measure in feature space and

d = ∑
Ti∈D

d(Ti ,T)/ND

is the mean distance of images inD to T.

Entropy Utility A measure of information is the reduction in entropy in the distribution ofT by
selecting a particular display set. So we can define a utility based on the negative expected entropy of
the posterior ofT from picking an image inD, expectation over the images inD:

UE(D,T) =− ∑
A j∈D

E(A j ,D)P(A j |D,T), (2.42)

where

E(A j ,D) =−
N

∑
i=1

P(T = Ti |A j ,D) log(P(T = Ti |A j ,D))

is the entropy of the posterior distribution ofT given thatA j is picked fromD (following Equations2.38
and2.39) and

P(A j |D,T) =
exp(−d(A j ,T)/σ)

∑Tj∈D exp(−d(Tj ,T)/σ)
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is the likelihood term as in Equation2.37but using the distance measured over the entire feature space
andσ is the posterior mean ofσ.

2.6.3.3 Optimisation Methods

BecauseU(D) is separable in each element ofD, the optimalD for the indicator utility can be easily
computed. This is not the case if one moves to using the variance or entropy utilities. Evaluation of the
expected utility for all possibleD is not an option as the number is large i.e. forN = 1000 andND = 6 we
have about 1.37×1015 possible subsets. For these, we have to resort to methods that are not guaranteed
to find the optimal. We propose two Monte Carlo optimisation schemes.

Random Generation We randomly generate without replacementK subsetsD1, . . . ,DK . Then we
let

Dt+1 = arg
K

max
k=1

U(Dk). (2.43)

Each element of a setD can be simulated from any distribution onI ; obvious choices are the uniform
andP(T |Ht). In this paper we choose the latter.

Simulated Annealing For simulated annealing, we define a “neighbour” of a subsetD to be another
subset with one different image. A simulated annealing algorithm then runs as follows:

1. Define an initial temperatureT0, a final temperatureTmin and a cooling scheduleT1,T2, . . .. Ran-
domly generate without replacement a setD0, usingP(T |Ht). Let k = 0.

2. While Tk > Tmin

• k = k+1.

• Select at random one image inDk−1 and replace with another image inI −Dk−1, randomly
generated according toP(T |Ht). Call this new setDnew.

• With probability min{1,exp((U(Dnew)−U(Dk−1))/Tk)}, let Dk = Dnew elseDk = Dk−1.

3. Dt+1 = Dk.

Initial and final temperatures were decided on by using the methods of [51] and [56]. We looked at
several different cooling schedules, and found that inverse linear (Tk = a/(1+bk)) performed best. The
choice ofP(T |Ht) to generateD0 andDnew can be changed, to for example the uniform, but we found
that the method was not particularly sensitive to this choice. Finally, our definition of neighbour can be
made more or less strict, by for example allowing two changes forDnew or, conversely, only favouring
replacement of one image inDnew that is close in feature space to that image replaced. However we
found that our choice was a compromise between a too small and too large change that offered a good
accept rate.

Finally we note that computation time is limited in a live implementation of either optimisation
scheme, so typically we can compute only a small number of expected utilities.

2.6.4 Examples

As an illustration of the method, we have a simulated database of onlyN = 15 images, each with only
2 features, for which queries are implemented by displayingND = 3 images. This is clearly an unrealis-
tically small example but it has the advantages of allowing us to display what happens in feature space
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Figure 2.16: Feature space plots for the selection ofD2 for a simple database of 15 images
givenD1 = {T2,T3,T5} andA1 = T3. Images inD2 are highlighted by *.

and, since there are only 455 possible subsets of size 3, to compute the exact optimal subset under all 3
utilities and compare with the results obtained by random sampling and simulation.

Figure2.16shows an example of the system where one imageA1 is picked from an initial display
setD1, and the resulting choice ofD2 according to the 3 utilities. Upper left of the figure are the 15
images in feature space withD1 = {T2,T3,T5} highlighted. Image 3 is selected. We then see that, under
UI , we haveD2 = {T3,T8,T12}, that is images close to that selected. ForUV we haveD2 = {T6,T7,T13}
and forUE we haveD2 = {T7,T13,T14}, that is images that are widely separated in feature space are
chosen. To explore the effectiveness of the optimisation methods, we repeated this experiment 1000
times, computing the optimalD2 according to the random generation method and simulated annealing.
For the random subset generation, we simulatedK = 100 subsets. For the simulation annealing we used
an inverse linear cooling scheduleTk = a/(1+bk) with a andb chosen so that the final temperature was
reached in 100 iterations, thus both methods took the same time to compute. The results are compared
with the exact calculation in Table2.8 and we see that both non-exact methods are sub-optimal, but
nevertheless do manage on average to find subsets with expected utility close to the optimal. Random
generation appears to do slightly better than simulated annealing.

Finally, we move to the BAL database. In this case we cannot enumerate all possible subsets and so
D2 under the variance and entropy utilities is computed by the two optimisation schemes only. Table2.9
compares the optimisation methods over 10 runs for an example from this database whereD1 consists
of 6 images; note that we only have the exact result for the indicator utility. From the results for the
indicator utility it appears that both optimisation methods can be significantly sub-optimal. From all 3
utilities it appears that random generation performs better than simulated annealing.
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Utility Exact Computation Random Generation Simulated Annealing
over all subsets of 100 subsets 100 iterations

Indicator 0.2643 0.2624 0.2591
Variance 0.2299 0.2264 0.2246
Entropy -2.6869 -2.6879 -2.6883

Table 2.8: The average of the expected utility forD2 over 1000 runs for the 3 utility functions
and three computation methods. All runs use the example of Figure2.16.

Utility Exact Computation Random Generation Simulated Annealing
over all subsets of 100 subsets 100 iterations

Indicator 0.0157 0.0106 0.0100
Variance — 0.7767 0.7583
Entropy — -6.9642 -6.9647

Table 2.9: The average of the expected utility forD2 over 10 runs for the 3 utility functions and
three computation methods using the BAL database.

Figure2.17is an example from a database of paintings from the Bridgeman Art Library, using sets
of 6 images. The upper display set isD1, then the two lower sets areD2 under the indicator and entropy
utilities. They clearly show the large effect that the choice of utility has on the search process.

2.6.5 Conclusion

We have described a decision-theoretic approach to the problem of display set strategy in content-based
image retrieval systems. The notion of utility is, we believe, a useful and intuitive way to quantify display
strategy objectives. One is free to define any utility function at all, as long as computational issues can
be successfully addressed.

It remains to say that the two new utilities that we have proposed — variance and entropy — are
primarily of use in the early stages of a query, when the objective is to learn as much as possible about the
user’s target. Ultimately, one will want to resort to a utility that displays images close to the target, such
as the indicator. An obvious way to do this is to consider a utility that is a convex weighted combination
of the indicator utility with one of the other two, with the weight on the indicator utility increasing to 1
with the iteration, for example at thetth display set:

U(D,T) = αtUI (D,T)+(1−αt)UE(D,T),

with 0≤ αt ≤ 1 andαt → 1, and the entropy utility normalised from that in Equation2.42so that it lies
in [0,1] like UI (D,T). This is the subject of current work.

2.6.6 Acknowledgements

The images in the final figure are courtesy of the Bridgeman Art Library, London.
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Figure 2.17: An example of display set selection with paintings. At the top are six images for
D1. The male portrait (centre of top row) is selected. Below left isD2 under the indicator utility.
Below right isD2 under the entropy utility.

77



2.7 State of the Art on Computation Intensive Methods in
Video Outdoor Surveillance Systems

by László Havasi (havasi@digitus.itk.ppke.hu) and Tamás Szirányi (SzTAKI)

In this section we give an up-to-date overview about methods that require high computational cost
in video surveillance systems. The most important fact is several of the below methods should run
simultaneously in real-time to solve a complex multi-camera surveillance task.

2.7.1 Preprocessing

2.7.1.1 Image Deblurring

[9] Motion blur due to camera motion can significantly degrade the quality of an image. Since the path
of the camera motion can be arbitrary, deblurring of motion blurred images is a hard problem. Previous
methods to deal with this problem have included blind restoration of motion blurred images, optical cor-
rection using stabilized lenses, and special CMOS sensors that limit the exposure time in the presence of
motion. Take advantage of the fundamental tradeoff between spatial resolution and temporal resolution
to construct a hybrid camera that can measure its own motion during image integration. The acquired
motion information is used to compute a point spread function (PSF) that represents the path of the cam-
era during integration. This PSF is then used to deblur the image. The method can be extended beyond
the case of global camera motion to the case where individual objects in the scene move with different
velocities.

Note:
This deblurring method is not real time, but it is needed in case of moving cameras.

2.7.1.2 Background modeling

[87] A common method for real-time segmentation of moving regions in image sequences involves back-
ground subtraction, or thresholding the error between an estimate of the image without moving objects
and the current image. The numerous approaches to this problem differ in the type of background model
used and the procedure used to update the model. This method implements modeling each pixel as a
mixture of Gaussians and using an on-line approximation to update the model. The Gaussian distribu-
tions of the adaptive mixture model are then evaluated to determine which are most likely to result from a
background process. Each pixel is classi?ed based on whether the Gaussian distribution which represents
it most effectively is considered part of the background model. This results in a stable, real-time outdoor
tracker which reliably deals with lighting changes, repetitive motions from clutter, and long-term scene
changes. This system has been run almost continuously for 16 months, 24 hours a day, through rain and
snow.

Note:
In our expreiments this method can run with 10-15 FPS on medium sized images, but it causes heavy
CPU usage.

2.7.1.3 Shadow detection

[69] Moving shadows need careful consideration in the development of robust dynamic scene analysis
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systems. Moving shadow detection is critical for accurate object detection in video streams since shadow
points are often misclassified as object points, causing errors in segmentation and tracking. Many algo-
rithms have been proposed in the literature that deal with shadows. The paper presents a comprehensive
survey of moving shadow detection approaches, two of them are statistical and two are deterministic.

Note:
The shadow detection is an important task in surveillance systems, for instance traffic counters and indoor
action recognition. The cleared input images are goint to increase the accuracy of the following methods.

2.7.2 Feature extraction

2.7.2.1 Edge detection

[26] This statistical model was designed for the gradient vector field of the gray level in images. More-
over, the model contains a global constrained Markov model for contours in images that uses this statisti-
cal model for the likelihood. The model is amenable to an Iterative Conditional Estimation (ICE) proce-
dure for the estimation of the parameters; the model also allows segmentation by means of the Simulated
Annealing (SA) algorithm, the Iterated Conditional Modes (ICM) algorithm, or the Modes of Posterior
Marginals (MPM) Monte Carlo (MC) algorithm. This yields an original unsupervised statistical method
for edge-detection, with three variants. The tests indicate that the model and its estimation are valid for
applications that require an energy term based on the log-likelihood ratio. Besides edge-detection, this
model can be used for semiautomatic extraction of contours, localization of shapes, non-photo-realistic
rendering; more generally, it might be useful in various problems that require a statistical likelihood for
contours.

Note:
The edge map is the input of several detection and recognition methods. This fact means that the quality
of edge map should be as good as possible. The statistical methods generate pretty clear edge maps, but
the computation time is exremly high.

2.7.2.2 Symmetry extraction

[35] The availability of large 3D datasets has made volume thinning essential for compact representation
of shapes. The density of the skeletal structure resulting from the thinning process depends on the appli-
cation. Current thinning techniques do not allow control over the density and can therefore address only
specific applications. The paper describes an algorithm which uses a thinness parameter to control the
thinning process and thus the density of the skeletal structure.

Note:
The symmetry map is very characteristic to the objects and shapes. It leads several applications on
recognition and classification. Nevertheless, the calculation of the ideal symmetry map is far away from
real-time use.

2.7.3 Feature understanding/ Symmetry based shape recognition

[78] This paper presents a novel framework for the recognition of objects based on their silhouettes. The
main idea is to measure the distance between two shapes as the minimum extent of deformation necessary
for one shape to match the other. Since the space of deformations is very high-dimensional, three steps
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are taken to make the search practical: 1) define an equivalence class for shapes based on shock-graph
topology, 2) define an equivalence class for deformation paths based on shock-graph transitions, and
3) avoid complexity-increasing deformation paths by moving toward shock-graph degeneracy. Despite
these steps, which tremendously reduce the search requirement, there still remain numerous deformation
paths to consider. The proposed approach gives intuitive correspondences for a variety of shapes and is
robust in the presence of a wide range of visual transformations. The recognition rates on two distinct
databases of 99 and 216 shapes each indicate highly successful within category matches (100 percent in
top three matches), which render the framework potentially usable in a range of shape-based recognition
applications.

2.7.4 Motion classification

2.7.4.1 Activity detection by co-occurrence statistics

[86] The paper presents a visual monitoring system that passively observes moving objects in a site and
learns patterns of activity from those observations. For extended sites, the system will require multiple
cameras. Thus, key elements of the system are motion tracking, camera coordination, activity classifi-
cation, and event detection. This paper focuses on motion tracking and show how one can use observed
motion to learn patterns of activity in a site. Motion segmentation is based on an adaptive background
subtraction method that models each pixel as a mixture of Gaussians and uses an on-line approximation
to update the model. The Gaussian distributions are then evaluated to determine which are most likely
to result from a background process. This yields a stable, real-time outdoor tracker that reliably deals
with lighting changes, repetitive motions from clutter, and long-term scene changes. While a tracking
system is unaware of the identity of any object it tracks, the identity remains the same for the entire
tracking sequence. The system leverages this information by accumulating joint co-occurrences of the
representations within a sequence. These joint co-occurrence statistics are then used to create a hierar-
chical binary-tree classification of the representations. This method is useful for classifying sequences,
as well as individual instances of activities in a site.

Note:
The statistical based events detection methods are very promising, but in our experiments with similar
motion statistics the acquisition is memory and CPU demanding in high resolution images.

2.7.4.2 Pedestrian detection

[84] This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence
structure of parts of an object (a moving human body in our examples) automatically from unlabeled
data. The distinguished part of this work is that it is based on unlabeled data, i.e., the training features
include both useful foreground parts and background clutter and the correspondence between the parts
and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic
independence of parts, but the unsupervised technique is not limited to this type of graph. In the new
approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm is
applied. A greedy algorithm is developed to select parts and to search for the optimal structure based on
the differential entropy of these variables.

Note:
There isn’t polynomial method for graph decomposition, so this effective method cannot run in real-time
in case of complex scene.
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2.7.5 Camera calibration/A statistical approach

[55] Monitoring of large sites requires coordination between multiple cameras, which in turn requires
methods for relating events between distributed cameras. This paper tackles the problem of automatic
external calibration of multiple cameras in an extended scene, that is, full recovery of their 3D relative
positions and orientations. Because the cameras are placed far apart, brightness or proximity constraints
cannot be used to match static features, so the method instead applies planar geometric constraints to
moving objects tracked throughout the scene. By robustly matching and ?tting tracked objects to a
planar model, the scene’s ground plane is aligned across multiple views and decomposed the planar
alignment matrix to recover the 3D relative camera and ground plane positions. The method does not
require synchronized cameras, and the paper shows that enforcing geometric constraints enables us to
align the tracking data in time. In spite of noise in the intrinsic camera parameters and in the image data,
the system successfully transforms multiple views of the scene ’s ground plane to an overhead view and
recovers the relative 3D camera and ground plane positions.

[92][93] A method presented for groundplane estimation from image-pairs even if unstructured en-
vironment and motion. In a typical outdoor multi-camera system the observed objects might be very dif-
ferent due to the noise coming from lighting conditions, camera positions. Static features such as color,
shape, and contours cannot be used for image matching in these cases. In the paper a method is proposed
for matching partially overlapping images captured by video cameras. Using co-motion statistics, which
is followed by outlier detection and a nonlinear optimization, does the matching. The described robust
algorithm finds point correspondences in two images without searching for any structures and without
tracking any continuous motion. Real-life outdoor experiments demonstrate the feasibility of this ap-
proach.

Note:
Our statistical calibration method is very similar to the above method, but our method is more general.
The disadvantage of these methods is the extremely high memory usage and CPU power to update the
memory.
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