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Chapter 1

Introduction

Machine Learning (ML)techniques can find application in situations where data is available in
electronic format and ML algorithms can ‘add value’ by analysing this data. This is the situation
with the processing of multimedia content. The ‘added value’ from ML can take a number of
forms:

¢ by providing insight into the domain from which the data is drawn,
e by improving the performance of another process that is manipulating the data or
e by organising the data in some way.

This report presents a comprehensive review of the different ML techniques that have been
applied to the processing of multimedia content. The three main areas covered in the report are;
supervised learning, unsupervised learning, and dimensions reduction. A complete outline of
the chapters in the report is as follows:

e Chapter3: Supervised learning accounts for a lot of the research activity in ML and many
supervised learning techniques have found application in the processing of multimedia
content. This chapter describes the operation of the popular techniques such as Support
Vector Machines, Bayesian Networks, Nearest Neighbour Classifiers, etc.

e Chapter4: Unsupervised learning is also very important in the processing of multime-
dia content as clustering or partitioning of data in the absence of class labels is often a
requirement. This chapter covers, Clustering, Unsupervised Bayesian Techniques, Self-
Organising Feature Maps. It also contains a sub-section on Cluster Validity Analysis, a
difficult issue in unsupervised learning.

e Chapters: The distinction between supervised and unsupervised learning is not black and
white. Chapteb reviews semi-supervised learning, the grey area in between. Learning
may be ‘semi-supervised’ in a number of different ways. For instance, the training data
may be all (or almost all) of one class. Or all data is available for training but only some
of it is labelled.



e Chapter6: In addition to the supervised-unsupervised dimension, learning can also be
considered along aactive-passivelimension. In these terms, standard supervised learn-
ing is passive whereasactive learningrefers to a situation where the learner has some
control over the training it experiences.

e Chapter7:A defining characteristic of multimedia data is that it is of high dimensions.
This creates problems for machine learning algorithms so dimensions reduction is an
important issue in the application of ML to the processing of multimedia data. There are
two general approachefgature transformatiorronverts the data to a lower dimensions
representation and the original features are discardetkatate selectioselects a subset
of the original features. Both approaches are reviewed in detail in Chapter

10



Chapter 2

Task Types

The emergence of multimedia technology coupled with the rapidly expanding data collection,
for private, industrial and public uses (e.g. self-made photos and videos repositories, Web
resources, etc.) has attracted significant research efforts in providing tools for effective retrieval
and management of the multimedia information.

At first, retrieval techniques were mainly performed using an index of keywords. This
indexing technique, mainly done manually, has since shown its limitation, both for its accuracy
and for its applicability on huge database such as the world-wide web where the daily growing
data cannot be handled manually.

In the last two decades, several publicatiorig pnd softwares (e.g. QBIC http://wwwqbic.-
almaden.ibm.com) have been proposed to tackle the indexing issue, providing automatic tools
to extract semantics from multimedia database. Most of them has focused on the analysis on
one modality, visual or audio. Only recently, some interests has been shown to address the
multimodal/multimedia aspect of the data in itself, in defining semantics using multi-sources
data [3, 16, 1]. Another essential aspect of retrieval systems is their ability to interact with
human users (cf. fig2.1). This involves as well multi-modal signal analysis to improve the
human-machine communication. By gathering expertise in different signal processing research

Users:

experts or non-experts Multimedia data

Figure 2.1: MUSCLE tasks: (1) Computer-aided understanding and indexing of Multimedia
data, and (2) Human-Machine interaction for retrieval.
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domains, the MUSCLE project aims at proposing new solutions to the difficult problem of the
understanding of multimedia data at high semantic levels for retrieval.

Multimedia Understanding and Indexing. Multimedia data have a complex structure in
terms of inter- and intra-document references (e.g. text refers to images, audio punctuates video)
and are potentially an extremely valuable source of information. By its nature, the type of multi-
media repository, for instance sport video databases or satellite image databases, constraints the
set of information available. Moreover, the needs of the browsing application, usually defined
by users, has to be defined a priori in order to link efficiently high-level concepts with the data.
Some common objects likgeopleor facesare already widely used as an elementary concepts
used for browsing. Depending of the multimedia database, some specific objects can be defined
if they are seen relevant for semantic extraction. The understanding of the context where the
data have been recorded, and the application or information relevant in the recordings are es-
sential priors to design efficient automatic semantic extracting tools. By their learning abilities,
Machine Learning methods have therefore an essential role to play in the process of multime-
dia understanding, indexing and retrieval. Those are essential both to learn objects, events and
semantics of interest, as for learning human needs and queries in the user interation process.

Human-Machine Interaction. One goal of the NoE MUSCLE is to automatically extract
semantic information from multimedia data about people and their interactions with complex
and natural environments. Human behaviour understanding has a wide range of future ap-
plications ranging from intelligent surveillance systems to advanced user interface systems
[ LI Mg | 1 LR} 1 ]

Development of digital libraries will require advanced user interface systems, which can in-
terpret multimedia data in an automatic manner. Advanced user interface systems using speech
and human motion understanding may provide control and command in high-level interaction
with computerized systems and multimedia databases.

Early work on image retrieval systems is based on text input, in which the images are an-
notated by text and retrieval is performed on tef§t [However, manual annotation is labor-
intensive and becomes impractical when the collection is large. Another problem is the subjec-
tive nature of keywords. The same image or video may be annotated differently with different
annotators. Therefore, it is desirable to have a video database management system, including a
Web-based graphical query interface, which can handle queries involving spatio-temporal and
semantic properties of video datd.[ A spatio-temporal query may contain any combination
of directional, topological, 3D-relation, object-appearance, trajectory-projection and similarity-
based object-trajectory conditions. In this way, videos containing human activity and images
containing humans in a database can be retrieved in an efficient manner. Such a system can
interact with the user over the Internet through a graphical query interface as well.

It is also desirable to have a multimodal natural language interfaces for web search engines.
The user will be able to perform web queries using natural language or speech input to the
system. Such a system can engage the user in multimodal dialogue trying to further constrain
or relax the query and better match the user’s search requirements and it will be important to
summarize the web query results and create visualizations effects.

12



Natural language processing and speech understanding has already been used in early human-
machine interfaces. Vision is very useful to complement speech recognition and natural lan-
guage understanding for more natural and intelligent communication between human and ma-
chines. More detailed cues can be obtained by gestures, body poses, facial expressions, etc
[11,14,19, 17, 13]. Hence, future systems must be able to independently sense the surrounding
environment, e.g., detecting human presence and interpreting human behavior.

In order to extract semantic information humans in the video have to be detected as a first
step. Humans can be stationary or moving. Detection of stationary persons in the video is
equivalent to detection of persons in still images. In order to reach a robust decision, one can
take advantage of the associated audio and text (if available) as well. If there is human speech
in the audio portion of the video then this may be used as an additional clue to reach a final
decision. Therefore, following problems should to be solved in a semantic information system
before extracting useful knowledge from multimedia data:

Stationary human and human body parts detection in image and video,

moving object detection and classification in video,

tracking moving objects in video and gait analysis,

speech detection in audio, and annotation of video using associated speech data, and
analysis of the available text for human behaviour understanding in video.
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Chapter 3

Supervised Learning

The defining characteristic of supervised learning is the availability of annotated training data.
The name invokes the idea of a 'supervisor’ that instructs the learning system on the labels
to associate with training examples. Typically these labels are class labels in classification
problems. Supervised learning algorithmducemodels from these training data and these
models can be used to classify other unlabelled data. In the language of statistics, the label
is the dependentvariable while the features that describe the examples arentlependent
variables.

Rather than be a class label, the dependent variable might also be a numeric variable, in
which case the learning task is a regression rather than a classification problem. Some of the
supervised learning techniques described here are naturally suited to classification tasks and will
not work readily for regression problems, i.e. the learning algorithm depends on the availability
of class labels. This is true of support vector machines which find hyperplanes that maximally
separate two classes of labelled data. It is also true for decision trees that partition a feature
space in order to separate labelled examples. Nevertheless, variants of these techniques have
been developed in order to handle regression problems.

In the following sections we provide in-depth descriptions of the operation of the important
supervised learning techniques together with examples of their application on multi-media data.
The techniques that are covered are; Support Vector Machines, Decision Trees, Nearest Neigh-
bour Classification, Bayesian Techniques and Neural Networks. There is also a subsection on
Ensembles since almost all supervised learning techniques benefit from the ensemble approach,
i.e. the formation of @ommitteeof classifiers to address a problem. The section concludes with
a brief discussion of the merits and demerits of these techniques for processing multimedia data.

3.1 Support Vector Machines

Support Vector Machines (SVM) are a new type of learning algorithms developed in the 1990s.
They are based on results from statistical learning theory introduced by Vaiiink [These
learning machines use kernels, which are a central concept for a number of learning tasks. The
kernel framework is used now in a variety of fields, including multimedia information retrieval
(see for instance?fl9, 261] for CBIR applications), bioinformatics, pattern recognition.

We focus here on the introduction of SVM for binary classification. Complete introduction

15
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Figure 3.1: SVM margin

to SVM and kernel theory can be find i and [235. Starting with linear SV approach for
classification, generalization producing nonlinear boundaries is then introduced, with practical
implementation considerations, and applications to CBIR are discussed.

3.1.1 Linear classification

We assume here that both classes are linearly separabléxiliet nj, Xi € RP be the feature
vectors representing the training data, mdie[m}, yi € {—1,1} be their respective class la-
bels. Let define a hyperplane byw,x > +b = 0 wherew € RP andb € R. Since the classes
are linearly separable, we can find a functigrf (x) =< w,x > +b with

Yif(Xi) =yi(<w,Xx >+Db) >0, Vi € [1,N] (3.1)

The decision function may be expressed@x) = sign(< w,x > +b) with

fd(xi) - Sigr(yi>7 vie [17N]

Since many functions realize the correct separation between training data, additional con-
straints are used. The SVM classification method aims at findinggtimal hyperplane based
on the maximization of thenargin® between the training data for both classes (see Figuje

Because the distance between a p&iahd the hyperplane i ‘:,f,’ﬂ), it is easy to showi]
that the optimization problem may be expressed as the following minimization:

.1 . .
m|n§||w||2 subject toy; (< w,x; > +b) > 1, Vi € [1,N] (3.2)

The support vectorsre the training points for which we have an equality in EQ. They
are all equally close to the optimal hyperplane. One can prove that they are enough to compute
the separating hyperplane (whence their name).

This is a convex optimization problem (quadratic criterion, linear inequality constraints).
Usually, the dual formulation is favored for its easy solving with standard techniques. Using

1The margin is defined as the distance from the hyperplane of the closest points, on either side.
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Lagrange multipliers, the problem may be re-expressed in the equivalent maximization on
(dual form):

N N

a* = argamaxi;cx. 2i.Jz_lo(.ouy.y] < Xi, Xj > (3.3)

with:
N
Zaiyi =0 and Vie[l,N] a;>0

The hyperplane decision function can be written as:
N
fa(X) = sign( Zyiar < X,Xj > +b) (3.4)
i=

3.1.2 Soft margin

The previous method is applicable to linearly separable data. When data can not be linearly
separated, the linear SVM method may be adapted. A soft margin may be used too in order to
get better efficiency in a noisy situation.

The idea is still to build a hyperplane, but the objective now imioimizethe classification
error. In order to carry out the optimization, the constraints of Edj;are relaxed using slak
variables;:

yif(xi)=vi(<w,xi >+b)>1-¢§, with & >0 Vie[1N] (3.5)
The minimization may be then expressed as follows:
1 N
min§|]w||2+Ci;Ei (3.6)

with a constan€ > 0, subject to the constraint3.f) .
The dual representation is obtained in a similar way:

N
a* = argmax Zlai —

a =

aiajyiyj < Xi, Xj > (3.7)
1

NIk
™Mz

subject to
N

Zaiyi =0 and Vie[l,N] 0<q;<C
i=

It consists in a very simple adaptation by introducing a ba@indthe initial equations{54.
The constant is used to tune the tradeoff between having a large margin and few classification
errors.
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3.1.3 Kernel-based classification

The linear SVM classifier previously described finds linear boundaries in the input feature
space. To get much more general decision surfaces, the feature space may be mapped into
a larger space before achieving linear classification. Linear boundaries in the enlarged space
translate to nonlinear boundaries in the original space.

Let us note the induced spagévia a mapd:

® : RP—oH
X — P(X)

In the SVM framework, there is no assumption on the dimensionalit} efhich can be very
large, and sometimes infinite. We just suppose #itas equiped with a dot product. Maximiz-
ing the Eq. 3.7 now requires the computation of dot produetsb(x;), ®(x;) >. In practice,
®(x) is never computed due to thernel trick kernel functionk(.,.), respecting some condi-
tions (positive definite, Mercer’s conditioR} are introduced such that:

k(X,y) =< ®(x), ®(y) >

Using these functions allows us to avoid to explicitly comp@e). Everything about the
linear case also applies to nonlinear cases, using a suitable kensetad of the Euclidean dot
product. The resulting optimization problem may be expressed as follows:

N 1 N
o* =argmaxy aj — = aiojyiyiK(xi, Xj)
N2 2,
N 0 (3.8)
- ajyi =
with i;

Vie[LLN] 0<a;<C
Thanks to the optimat* value, the decision function is:
N
fa() = sign( 3 yiafk(xx) +b) (3.9)
i=

The most popular choices fé&rin the SVM literature are:

e Gaussian radial basis function kernel:

K(X,y) = 315 (3.10)

¢ Sigmoid kernelk(x,y) =tanh(ni < x,y > +n2)

e Polynomial kernelk(x,y) =< x,y >4

2We are dealing with the class of kern&lthat correspond to dot product in the enlarged space.
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For multicategory problems, the linear SVM approach may be extended as any linear ma-
chines to create boundaries consisting of sections of hyperplanes. When linear discrimination
is not efficient enough, an appropriate nonlinear mapping can be found.

For density estimation problems, adaptation of binary SVM machines is also proposed. The
One-Class SVM method estimates the density support of a vectgxiget; nj- With a kernel
k(x,x) = 1, this lead to the following optimization problem:

N (3.11)

3.1.4 Alternative Kernels

Kernel-based algorithms are enjoying great popularity in machine learning community. One of
the main success of this algorithms is that the similarity between features is expressed in term of
kernels which maps features to a high dimension space. This mapping allows the svm classifier
to deal with highly non-linear features. kernels can be viewed also as inner products in the
mapped space. The mapping is implicit, which means that kernel can be written without a need
to the explicit expression of the mapping. The crucial condition that kernels should satisfy to
be suitable for SVM is the symmetry and the positive definess known as the mercer condition.
Conditionally positive definite kernel2£7] is a more general than positive definite kernels.
They are suitable SVM since the equilibrium constraint is verified. Non-positive definite kernels
[187] are also used for SVL. Although no warranty of the convergence of the SVM dual problem
to a unigue optimum, good performances are obtained with such kernels. Tools for designing
kernels can be found ir f, 45]. We present in the following a non exhaustive review on kernels

for SVM.

3.1.4.1 Basic Kernels

The simplest kernel is the linear kernel which is the euclidean inner product. One of the most
popular kernel is the RBF kernel?1]. scale factor is a tunnable hyperparameter. It can be
viewed as the kernel bandwidth. Using the RBF Kernel, the SVM can be viewed as radial basis
function network with gaussian kernels centered at the support vectors. The polynomial kernel
is directional, i.e. the output depends on the direction of the two vectors in low-dimensional
space. This is due to the inner product in the kernel. Thus the polynomial kernel is suited for
problems where all the training data are normalized. 7Ifj,[different classes of kernels are
studied such as stationary, anisotropic, reducible kernels, etc.

3.1.4.2 Compactly supported kernels

Compactly Supported kernels are defined as kernels that vanish whenever the distance between
the two features exceeds a certain distafick [Their main advantage is that the obtained kernel
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matrix is sparse, therefore linear algebra algorithms can be applied to enhance computation. In
[77], compactly supported kernels are studied. The Mattern kernel is multiplied by a know
compactly supported kernel to obtain a new family of kernels2iit] a generalization of the
spherical kernels to high dimension is introduced.

3.1.4.3 Kernels for structured data

e Convolution kernels{3]: They are suitable for feature space that are not attribute-value
tuples .

The basic idea behind convolution kernels is that the similarity between composite objects
can be captured by a relation between the object and its parts. The kernel on the object
is then made up from kernels defined on different parts. Convolution kernels are very
general and can be applied in a various problems.

e Graph kernels: A graph is defined as a set of vertices and a set of edges. Graph kernels
compare the structure of graphs such as how many subgraphs in commars,[119,

1.

e Diffusion kernels: The main idea behind diffusion kernel is that it is easier to describe the
local neighborhood of an instance than describing the whole instance spage s,
]. The neighborhood might be defined as instances that differs only by one property.

e Generative model kernels: The first prominent kernel based on generative model is the
fisher kernel 108 ]. Itis based on the gradient of log-likelihood of the generative
model (a posteriori probability) with respect to the parameter. The fisher kernel is defined
from the information fisher matrix deduce from the generative model. A general frame-
work of defining generative-model kernels has been presentédih [The fisher kernel
comes as a particular case of the “marginalized kernels”.

3.1.4.4 Kernels for set of vectors

The set of vectors are features with no structure is defined between vectors . Many applications
use set of vectors as a feature representatipifage representation with salient points is an
example of the set vector feature representation. The Kernel principal afAgi¢spmpares

the two set of local features by computing principal angles. This consists of finding maximum
angles between local features under orthogonality constraint] halissdorf kernel is used for

SVM object recognition, it is proved to be definite positive when salient point are characterized
with image patch. In127], the set of vectors is fitted with a gaussian distribution and a bat-
tacharryaa affinity is defined to measure the similarity between the two gaussian distributions.

3.1.4.5 String kernels

The traditional kernel for text classification is simply the inner product of two words into the
text space representationl[s, \ , 45, ]. A recent approach consists of comparing
common subsequences in the two worélsd. The gap between the subsequences are penal-
ized. This can be done using the total length in the two strings. The p-spectrum Kefijel [
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counts how many contiguous sub-strings of lengtthe strings have in common. A recent
kernel 281] based on local correlations has reported better classification accuracy.

3.1.5 SVM application to CBIR

Contrary to the early systems, focused on "full-automatic" strategies, recent approaches intro-
duce human-computer interaction into CBIR[]. Starting with a coarse query, the interactive
process allows the user to refine his request as long as it is necessary. Many kind of interaction
between the user and the system have been proposed, but most of the time, user information is
binary annotationg,e. relevant for images belonging to the searched category, and otherwise
irrelevant.

Statistical learning approaches have been introduced in the CBIR context and have been
very successful. As well the techniques modeling the searched category as a density probability
function, as the discrimination methods significantly improve the effectiveness of the visual
information retrieval task. However, CBIR has a very specific classification context. There are
very few training data during the retrieval process, the input space dimension is usually very
high, unlabeled data are availabdt¢ Thus classical learning schemes have to be adapted.

Support Vector Machines (SVM) are used in such a context because they are dedicated for
binary classification and are well adapted to these specificities. They have good classification
performances with few training data and high input space.

In CBIR, systems have to classify image databases with few training data. When very few
labels are available, inductive SVM classification may have unexpected results. Bad config-
uration may happen when learning samples do not represent accurately the structure of data.
Meanwhile, all unlabeled data (images from database) are available. If data are structured,
unlabeled data should be useful for classification. LeS&igf[proposes to adapt the SVM
scheme using unlabeled data. Only one parameter (threbholé&g. 3.4) is modified for all
the data. Joachims proposes a method to use unlabeled data: Transductive SViM § text
retrieval context. This method computes labels for unlabeled data such as hyperplane separates
data with maximum margin. It has been used in CBIR (seeSWdign: implementation pro-
posed by Joachims). Unfortunately, no trend becomes apparent with the use of TSVM. It is
very data-dependent, and, of course, time consuniing [

Besides, active learning{] may be helpful to carry out an efficient online retrieval strat-
egy. The performance of inductive classification depends on the training data set. In interactive
CBIR, all the images labeled during the retrieval session are added to the training set used for
classification. As a result, the choice of the labeled images to add will change system perfor-
mance. For instance, labeling an image which is very close to one already labeled will not
change the current classification. Active learning strategies offer a natural framework for inter-
active image retrieval. Usual active learning strategies in statistical learning propose to choose
elements with the less classification accuracy. Some researchers for instance! Gpprof
pose to train several classifiers with the same training data, and choose data where classifiers
disagree the most. Other ones, Zhu for instangd| propose to minimize a cost function (the
risk) to determine images with the less classification accuracy. Combining both SVM classi-
fication and Active learning has provided efficient strategies in CBH][ The SVMactive
learning method444] tries to focus the user on images whose classification is difficult. It asks
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user to labemimages closest to the SVM boundary. The closer to the margin an image is, the
less reliable its classification is.

3.1.6 Face processing by using SVMs

In the last years face and facial expression recognition have attracted much attention though
they have been studied for more than 20 years by psychophysicists, neuroscientists and engi-
neers. Many research demonstrations and commercial applications have been developed from
these efforts. Face processing systems mainly developed for human computer interaction, in
security applications etc. Examples include access control to buildings, surveillance and intru-
sion detection. Automatic face processing systems has the appealing characteristic of not being
an invasive tool, as compared with fingerprint or iris biometric systems. A first step of any
face processing system is detecting the locations in images where faces are present and than the
recognition task can be performed.

3.1.6.1 Detection of Faces

Face detection from a single image is a difficult task because of changes in scale, orientation,
location and pose. Facial expression, (self)occlusion and lighting conditions also change the
overall appearance of faces.

Support Vector Machines (SVMs) were first applied to face detection by Osuifih [The

SVM is a learning technique for training polynomial or Radial Basis Functions classifiers. The
decision surfaces in this technique are found by solving a linearly constrained quadratic pro-
gramming problem. This optimization is challenging because the quadratic form is completely
dense and the memory requirements grow with the square of the number of data points. Osuna
et al. developed an efficient decomposition algorithm that guarantees global optimality, and can
be used to train SVM’s over very large data sets (50000 data points). The training time of their
algorithm versus number of samples and SVs can be se@r.inThis system detects faces

by exhaustively scanning an image for face-like patterns at many possible scales, by dividing
the original image into overlapping sub-images and classifying them using an SVM with a 2nd
order polynomial as kernel function and an upper bound C=200. The input to the system is
a 19*19 sub-image. The proposed method was tested on two standard test sets. Test set A,
contained 313 high-quality images with one face per image. Test set B, contained 23 images of
mixed quality, with a total of 155 faces. The detection rate on test set A is 97%, on test set B
is 74%. This algorithm seems to be a promising method to solve the problem of face detection.
Instead of estimating the densities of face and non-face classes, it seeks to model the boundary
of the two classes. However the algorithm handle only frontal views.

In the work of 207] a comparison of SVM-based methods for face detection is given. Two
different SVMs were trained, one with a polynomial kernel and another one with RBF kernel.
As all the faces share the same structure, there must be an underlying model that generates
all instances of the face class. A PCA is applied to model the set of available faces and the
SVMs were trained in eigenfaces spaces. The detection results vs. kernel's parameters can be
seen in3.3. The best classification rates are summarized.in In the paper 123 a multi-

ple face detection algorithm was proposed for video surveillance applications. The ICA-SVM
based pattern detection is performed on the candidate region extracted by motion, color and
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Figure 3.2: (a) Training Time on a SPARC station-20 vs. number of samples; (b) Number of
Support Vectors vs. number of samples; (c) Training Time on a SPARC station-20 vs. number
Support Vectors. Notice how the number of support vectors is a better indicator of the increase
in training in training time than the number of samples alone; (d) Number of global iterations
performed by the algorithm.
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Figure 3.3: Accuracy of two SVMs on the test set. The horizontal axis represents the values of
the kernel parameter.
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Classifier Number of eigenfaces

20 36 102

Polynomial SVM| 96.21%| 97,86% | 97.35%
RBF SVM 96.30%| 97.41%| 97.93%

Table 3.1: Top performances on the test set. The algorithms were tested on the BANCA test set.

Foreground
regien | gkin Calor
e " Probahility \ Maltocdl
aptive ulti-scale
gﬂdgé —| Background 1obal Probahility Map —bﬁﬁzdd@
EHEEE Femowval Glo / Computati on HAGEHES
| Appearance
i based
Probability

(a) Visual attention: face candidate regions are detected.
Pasilian cand
Seakzof Fined
Faee
Clasnddidiate ICA based 3VM hased Tarectional Detection

Windows - catiE ] e > i
Eztraction Classification Tracking \Coﬁor

|

Pasition and Distribagion off

Srale of Face Faces for
Fece Adaplive Codar
Detaction Modsl
Model

Figure 3.4: Architecture of the proposed algorithm.

global appearance information. The architecture of the proposed system can be 3ekn in

A hybrid-learning scheme that combines ICA and SVM is used in the proposed algorithm. In
low-level feature extraction, ICA produces statistically independent image bases. In high-level
pattern classification, SVM classifies the ICA features as a face or non-faces. ICA features are
expanded from not only face but also face-like class and also used the residual error in each
class to dramatically enhance detection performance. Various face, face-like and non-face im-
ages were collected and normalized to 20*20 to train ICA and SVM. Normalized images were
histogram equalized and dimensions were reduced to be 300 by oval masking. The face images
included artificially rotated, shifted and resized faces. The face-like images were initially se-
lected as the non-face images, which have small Euclidean distance to the average face image.
50 coefficients are used of the ICA bases, which span the face class and 50 coefficients of the
ICA bases, which span the face-like class. Two more features are added, reconstruction errors
in two classes. Euclidean distance measure is used for errors, assuming isotropic Gaussian data
distribution. After extracting features of a given pattern, it is classified as a face or not using
the trained polynomial SVM with a polynomial kernel with degree 2 and the number of support
vectors is 467.

The proposed method was tested on two test sets. Set A contained 400 high-quality images
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Classifier Set A SetB

Detect Rate False Alarm| Detect Ratg False Alarm
Conventional* 97.2% 3 84.8% 127
Proposed** 98.5% 4% 90.1% 62

Table 3.2: Test result of the pattern detection step. * - 50 ICA features from face class; ** - 100
ICA features from face and face-like class and 2 residual errors.

Detect Rate False Alarms
Face candidate 97.66% -
Face pattern 93.42 7

Table 3.3: Test results of the integrated algorithm.

with one face per image from Olivetti DB. Set B contained 36 images of mixed quality, with

a total of 172 faces from CMU DB. Set A involved 1684800 pattern windows, while Set B
involved 6178110.3.2 shows that the proposed ICA feature expansion largely increases the
detection performance. The proposed integrated algorithm was also quantitatively evaluated
using 7000 640*480 stills from color video sequences. The video sequences were collected
under various and changing conditions. The average execution time integrated algorithm is
250ms on a Pentium IV 1GHz P@.3 shows two results of sequential steps. The first is face
candidate detection through the background removal, color and global appearance. The latter
is face detection through the pattern matching and tracking. Final face detection rate is 91.2%.
In the paper[4d a combined Eigenface and SVM based method was proposed for multi-view
face detection. Detecting faces across multiple views is more challenging than in a fixed view,
e.g. frontal view, owing to the significant non-linear variation caused by rotation in depth, self-
occlusion and self-shadowing. To address this problem, a novel approach is presented here. The
view sphere is separated into several small segments. On each segment, a face detector is con-
structed. The pose of an image is explicitly estimated regardless of whether or not itis a face. A
pose estimator is constructed using Support Vector Regression. The pose information is used to
choose the appropriate face detector to determine if it is a face. With this pose-estimation based
method, considerable computational efficiency is achieved. Meanwhile, the detection accuracy
is also improved since each detector is constructed on a small range of views. Two tasks need
to be performed for head pose estimation: constructing the pose estimators from face images
with known pose information, and applying the estimators to a new face image. The method of
SVM regression was adopted to construct two pose estimators, one for tilt (elevation) and the
other for yaw (azimuth). The input to the pose estimators is the PCA vectors of face images;
the dimensionality of PCA vectors can be reasonably small in the experiments (20, for exam-
ple). The output is the pose angles in tilt and yaw. Compared with other learning methods, the
SVM-based method has distinguishing properties such as:

e No model structure design is needed. The final decision function can be expressed by a
set of 'important examples’ (SVs).

e By introducing a kernel function, the decision function is implicitly defined by a linear
combination of training examples in a high-dimensional feature space.
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Figure 3.5: The hybrid method of Eigenface and SVM.

e The problem can be solved as a Quadratic Programming problem, which is guaranteed to
converge to the global optimum of the given training set.

The detection process consists of a coarse detection phase by the Eigenface method followed by
a fine SVM phase. A schematic illustration of the classification criterion of the hybrid method

is given in3.5. In the first phase, the probability density of each class is estimated as simply as
possible. Two thresholds, a rejection threshold and an acceptance threshold are defined. For a
test sample x; if the value of the probability of a pattern x being a face, returned by Eigenface
method, is less than rejection threshold; it is rejected as a negative example. If the value is larger
than acceptance threshold; it is accepted as positive. Otherwise, if the value falls between rejec-
tion and acceptance thresholds; it is considered as ambiguous and left to the SVM classifier in
the next phase. The values of the two thresholds should be determined by the acceptable false
positive and false negative rates which are usually application dependent.

An SVM-based classifier is trained using the examples in the middle regidrb dhe classi-

fier is only activated when an ambiguous pattern emerges. Usually the SVM-based classifier
is computationally more expensive than the Eigenface method, but more accurate. However,
since the proportion of the examples in the ambiguous region is relatively small, a significant
improvement of the classification speed can be achieved. Furthermore, owing to the fact that the
SVM classifier is trained only on the examples in the ambiguous region and not on the whole
training set, the SVM classification problem is simplified to some degree. A more precise and
compact set of SVs are obtained.

In the experiments the faces captured in the images are about 50*50 pixels. The range of pose of
these face images is [-90,+90] degrees in yaw and [-30,+30] degrees dn@dhows estimated

pose from a test sequence. The experimental results indicate that

e The SVM method is the most accurate in terms of error in detection scale and location,
but also the slowest;

e The Eigenface method is the fastest, but less accurate in certain frames;
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Figure 3.6: Pose estimation on a test sequence. In (b) and (c), the solid curves are the estimated

pose in yaw and tilt and the dotted curves are the ground-truth pose which is measured by the
data acquisition system.

e The hybrid method demonstrates the best balance between accuracy and speed; it is al-

most as accurate as the SVM method and not significantly slower than the Eigenface
method in most frames.

3.1.6.2 Discussion

SVMs are proved to be excellent tool for classification very large-scale data. This review at-

tempts to show how SVMs are used for face detection and recognition. As it can be seen from
the results reported above SVMs outperforms all classical techniques, which have been intro-
duced during last years, for face processing. Unfortunately, comparison of SVMs with all latest

algorithms (neural networks, naive bayes classifier etc.) is not available in literature. However

some concluding remarks can be made and questions for future research can be formulated:

e Classification with SVMs is computationally more demanding than other methods but

more accurate. With respect to speeding up the classification (in most cases training can
be made off line) the following questions arising:

— How the number of SVs can be reduced or how to find a minimal subset of SVs that
the performance of the classifier is still satisfactory?

— How the process of training and testing can be parallelized?

e Most of the systems were tested on academic datasets with frontal faces. The systems
should be tested in real circumstances.
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Figure 3.7: Comparison results of, from left to right, the SVM, Eigenface and hybrid methods
for multi-view face detection on a test sequence: (a) shows the detection time in seconds on each
frame; (b) and (c) are the position errors in pixels from the ground-truth position in horizontal
and vertical direction, respectively.
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Class Sepalleng |SepalWi |PetalLen |PetalWi

Setosa 5.1 3.5 1.4 0.2 1
150 DS
Setosa 4.9 3.0 1.4 0.2 PETALLEN __Jy

Setosa 47 3.2 1.3 0.2

<=245 1 >245
Setosa 46 3.1 1.5 0.2 50DS 100DS

I:> Decision Tree :> [Sctosa | PETALLEN
Setosa 5.0 3.6 1.4 0.2 .
Induction

Versicolor 7.0 3.2 47 1.4 <=49 1 >4.9
54 DS 46 DS
Versicolor 6.4 3.2 4.5 15 PETALWI [Virginic]

Versicolor 6.9 3.1 4.9 15
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Attribute-Value Pair Representation Data Mining Result

Figure 3.8: Basic principles in decision tree induction.

3.2 Decision Tree Induction

Decision tree induction allows one to learn a set of rules and basic features necessary for
decision-making in a diagnostic task. The induction process does not only act as a knowl-
edge discovery process, it also works as a feature selector, discovering a subset of features that
is the most relevant to the problem solution. A decision tree partitions the decision space re-
cursively into sub-regions based on the sample set (see Figreln this way the decision

tree recursively breaks down the complexity of the decision space. The outcome has a for-
mat, which naturally presents the cognitive strategy of human decision-making process. IThis
learning methods is also called supervised learning since samples in the data collection have
to be labelled by the class. Most decision tree induction algorithms allow the use of numeri-
cal attributes as well as categorical attributes. Therefore, the resulting classifier can make the
decision based on both types of attributes.

3.2.1 Subtasks and Design Criteria for Decision Tree Induction

The overall procedure of the decision tree building process is summarized in Biuieci-

sion trees recursively split the decision space into subspaces based on the decision rules in the
nodes until the final stopping criteria is reached or the remaining sample set does not suggest
further splitting. For this recursive splitting the tree building process must always pick among
all attributes that attribute which shows the best result on the attribute selection criteria for the
remaining sample set. Whereas for categorical attributes the partition of the attributes values
is given a-priori. The partition (also called attribute discretization) of the attribute values for
numerical attributes must be determined.

It can be done before or during the tree building procésg [We will consider the case
where the attribute discretization will be done during the tree building process. The discretiza-
tion must be carried out before the attribute selection process since the selected partition on the
attribute values of a numerical attribute highly influences the prediction power of that attribute.
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do while tree termination criterion faild
do for all features

feature numerical?
yes no

splitting-procedure

feature selection procedure

split examples

built tree

Figure 3.9: Basic principles in overall procedure for decision tree induction.

After the attribute selection criteria was calculated for all attributes based on the remaining sam-
ple set, the resulting values are evaluated and the attribute with the best value for the attribute
selection criteria is selected for further splitting of the sample set. Then, the tree is extended
by a two or more further nodes. To each node is assigned the subset created by splitting on the
attribute values and the tree building process repeats. Attribute splits can be done:

e univariate on numerically or ordinal ordered attribu¥esuch asx < a,
e multivariat on categorical or discretized numerical attributes sucha#\, or
e linear combination split on numerically attributgsa; X < c.

The influence of the kind of attribute splits on the resulting decision surface for two attributes
is shown in Figure3.10 The axis-parallel decision surface results in a rule such as:

IF F3 > 49 THEN CLASS-Virginica

while the linear decision surface results in a rule such as

IF  —3.272+0.3254xF3+F4 > 0 THEN CLASS- Virginica

The later decision surface better discriminates between the two classes than the axis-parallel
one, see Figurd.11). However, by looking at the rules we can see that the explanation capabil-
ity of the tree will decrease in case of the linear decision surface.

The induced decision tree tends to overfit to the data. This is typically caused due to noise in
the attribute values and class information present in the training set. The tree building process
will produce subtrees that fit to this noise. This causes an increased error rate when classifying
unseen cases. Pruning the tree which means replacing subtrees with leaves will help to avoid
this problem. Now, we can summarize the main subtasks of decision tree induction as follows:
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Figure 3.11: Demonstration of recursively splitting of decision space based on two attributes
of the IRIS data set.
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e attribute selection (Information Gair[(], x? Statistic [.27] ,Gini-Index [29] , Gain
Ratio [217),

e attribute discretization (Cut-Point{ (], Chi-Merge [L27], LVQ [204], MLDP [66], His-
togram pP04] , Hybrid Methods P04]), and

e pruning (Cost-Complexity49] , Error Reduction £1(] , Confidence In-terval Method
[217], Minimal Error [17]).

Beyond that, decision tree induction algorithm can be distinguished in the way they access
the data and in non-incremental and incremental algorithms. Some algorithms access the whole
data set in the main memory of the com-puter. This is insufficient if the data set is very large.
Large data sets of millions of data do not fit in the main memory of the computer. They must
be assessed from disk or other storage device so that all these data can be mined. Accessing the
data from external storage devices will cause long execution time. However, the user likes to get
results fast and even for exploration purposes he likes to carry out quickly various experiments
and compare them to each other. Therefore, special algorithm have been developed that can
work efficiently although using external storage devices. Incremental algorithm can update
the tree according to the new data while non-incremental algorithm go trough the whole tree
building process again based on the combined old data set and the new data. Some standard
algorithm are: CART, ID3, C4.5, C5.0, Fuzzy C4.5, OC1, QUEST, CAL 5.

3.2.2 Discretization of Attribute Values

A numerical attribute may take any value on a continuous scale between its mini-mal value
X1 and its maximal value,. Branching on all these distinct attribute values does not lead to
any generalization and would make the tree very sensitive to noise. Rather we should find
meaningful partitions on the numerical values into intervals. The intervals should abstract the
data in such a way that they cover the range of attribute values belonging to one class and
that they separate them from those belonging to other classes. Then, we can treat the attribute
as a discrete vari-able witki+- 1 intervals. This process is called discretization of attributes.
The points that split our attribute values into intervals are called cut-points. The cut-goints
lies always on the border between the distribution of two classes. Discretization can be done
before the decision tree building process or during decision tree leariiihgHere we want

to consider discretization during the tree building process. We call them dynamic and local
discretization methods. They are dynamic since they work during the tree building process
on the created subsample sets and they are local since they work on the recursively created
sub-spaces. If we use the class label of each example we consider the method as su-pervised
discretization methods. If we do not use the class label of the samples we call them unsupervised
discretization methods. We can partition the attribute val-ues into kwb) (or more intervals

(k >1). Therefore, we distinguish between bi-nary and multiinterval discretization methods.
In Figure 3.12 we see the conditional histogram of the values of the attribute petal length
of the IRIS data set. In the binary cade=1), the attribute values would be splitted at the
cut-point 2.35 into an interval from 0 to 2.35 and a second interval from 2.36 to 7. If we
do multi-interval discretization, we will find another cut-point at 4.8. That groups the values
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Figure 3.12: Histogram of cut points for the Petal-Length attribute

into 3 intervals k=2): interval_1 from 0 to 2.35, interval_2 from 2.36 to 4.8, and interval_3
from 4.9 to 7. We will also consider attribute discretization on categorical attributes. Many
at-tribute values of a categorical attribute will lead to a partition of the sample set into many
small subsample sets. This again will result into a quick stop of the tree building process. To
avoid this problem, it might be wise to combine attribute val-ues into a more abstract attribute
value. We will call this process attribute aggrega-tion. It is also possible to allow the user to
combine attribute interactively during the tree building process. We call this process manual
abstraction of attribute values.

3.2.3 Pruning

If the tree is allowed to grow up to its maximum size it is likely that it becomes overfitted to
the training data. Noise in the attribute values and class information will amplify this problem.
The tree building process will produce subtrees that fit to noise. This unwarranted complexity
causes an increased error rate when classi-fying unseen cases. This problem can be avoided by
pruning the tree. Pruning means replacing subtrees by leaves based on some statistical criterion.
This idea is illustrated in (see FiguBl13 on the IRIS data set. The unpruned tree is a large
and bushy tree with an estimated error rate of 6.67%. Subtrees up to the second level of the tree
get replaced by leaves. The resulting pruned tree is smaller and the error rate becomes 4.67%
calculated with cross validation (see Fig@r&é4). Pruning methods can be categorized either in
pre- or post-pruning methods. In pre-pruning, the tree growing process is stopped according to a
stopping criteria before the tree reaches its maximal size. In contrast to that, in post-pruning, the
tree is first developed to its maximum size and afterwards, pruned back according to a pruning
procedure.

An overview about all methods can be found i3 §.
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Figure 3.13: Unpruned decision tree for the IRIS dataset.
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Figure 3.15: A simple example of 3-Nearest Neighbour Classification

3.3 Nearest Neighbour Classification

The intuition underlying Nearest Neighbour Classification is quite straightforward, examples
are classified based on the class of their nearest neighbours. It is often useful to take more
than one neighbour into account so the technique is more commonly referre-tdemsest
Neighbour k-NN) Classification wher& nearest neighbours are used in determining the class.
Since the training examples are needed at run-time, i.e. they need to be in memory at run-time,
it is sometimes also called Memory-Based Classification. Because induction is delayed to run
time, it is considered hazy Learningechnique. Because classification is based directly on the
training examples it is also called Example-Based Classification or Case-Based Classification.
The basic idea is as shown in Figusel5 which depicts a 3-Nearest Neighbour Classifier
on a two-class problem in a two-dimensional feature space. In this example the decigjpn for
is straightforward - all three of it's nearest neighbours are of dlase it is classified as a.
The situation forg, is a bit more complicated at it has two neighbours of clasand one of
classO. This can be resolved by simple majority voting or by distance weighted voting (see
below).
Sok—NN classification has two stages; the first is the determination of the nearest neigh-
bours and the second is the determination of the class using those neighbours.
Let us assume that we have a training dat@setade up of(X;)ic(1 pj training samples.
The examples are described by a set of featkrasd numeric features have been normalised
to the range [0,1]. Each training example is labelled with a class igkely. Our objective is
to classify an unknown examptg For eachx; € D:

Sim(q, X;) = ;Wf5(Qf,Xif) (3.12)

There are a large range of possibilities for this similarity metric; a basic version for contin-
uous and discrete attributes would be:

1 f discrete andjs = Xt
o(qs,xif) =< O f discrete and); # Xt (3.13)
1—|gs —Xif| f continuous
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The k nearest neighbours are selected based on this similarity metric. Then there are a
variety of ways in which th& nearest neighbours can be used to determine the class of

A fairly general technique is distance weighted voting where the neighbours get to vote on
the class of the query case with votes weighted by their similarity to the query.

k
Votglyj) = Z wel(yj,Ye) (3.14)
c=1

Where the weightv. = Sim(q,X.), i.e. the similarity calculated above. Then the query
case is assigned the class with the highest score. A simpler version still would be to assign all
weights to 1 so that all neighbours get the same vote.

3.3.1 k-NN: Advantages and Disadvantages

k-NN is very simple to understand and easy to implement. So it should be considered in seeking
a solution to any classification problem. Some advantage$\i are as follows (many of these
derive from it's simplicity and interpretability):

e Because the process is transparent, it is easy to implement and debug.

¢ In situations where an explanation of the output of the classifier is useNIN can be
very effective if an analysis of the neighbours is useful as explanation.

e There are some noise reduction techniques that work onli-fX that can be effective
in improving the accuracy of the classifier/[].

e Case-Retrieval Netslf}4]] are an elaboration of the Memory-Based Classifier idea that
can greatly improve run-time performance on large case-bases.

These advantages &fNN, particularly those that derive from it’'s interpretability, should
not be underestimated. On the other hand, some significant disadvantages are as follows:

e Because all the work is done at run-tinkeNN can have poor run-time performance is
the training set is large.

e k-NN is very sensitive to irrelevant or redundant features because all features contribute
to the similarity (see Eg3.12and thus to the classification. This can be ameliorated by
careful feature selection or feature weighting.

e On very difficult classification tasksNN may be outperformed by momxotic tech-
niques such as Support Vector Machines or Neural Networks.

3.3.2 CBRinImage Processing

Image processing is a challenging field. The unique data (images) and the necessary com-
putation techniques require extraordinary case-representations, similarity measures and CBR
strategies to be utilised.
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Perner [ 94] proposes a system that uses CBR to optimize image segmentation at the
low level unit according to changing image acquisition conditions and image quality. The
intermediate-level unit extracts the case representation used by the high-level unit employed
to dynamically adapt image interpretation. The system works on different case representations
such as a graph-based representation for the cases of the high-level image description and the
raw image matrix for the low-level image representation. Therefore the system uses different
CBR strategies for the reasoning and learning part one is based on structural similarity and the
other is based on the digital image distance.

Grimnes and Aamodt[] present a system that integrates CBR into a task-oriented model-
based system for the interpretation of abdominal CT images. A case-based reasoner working
on a segment case-base contains the individual image segments. These cases with labels are
considered indexes for another case-based reasoner working on an organ interpretation case-
base. Their system is based on a propose-critique-modify learning cycle.

In [111] a system for ultra-sonic B-scans is presented that are one-dimensional signals. He
presents a tree-based retrieval strategy. Micageli. [ 164] applies CBR to scene recognition.

They calculated image properties from images and stored them into a case base. They used
the Wavelet transform because it is scale-independent, but this limits their similarity measure
to consider only object rotation. The application of CBR to image segmentation for CT images
from the brain is described in.p5. Different learning strategies in a hierarchy of structural
cases are presented irof] and [L9]]. Learning case representation and improving the system
performance by controlling the similarity measure is describedii][ The application of

CBR image interpretation to health monitoring and biotechnology is describédih [

A new challenging application field are geographical information systems. This kind of ap-
plication requires special spatial problem solving techniques and spatial similarity measures.
The first application of CBR to geographic information systems was reported by Holt and
Benwell [LO3. Their approach consists of combining case-based reasoning with geographi-
cal information systems to form a hybrid system to solve spatial problems in soil classification.
Carswellet al. described in their paper3{] a spatial similarity measure for comparing the
location objects in different images.

A completely different application of CBR to image processing has been described by Ficet-
Caucharcet al. [68]. They apply CBR for the development of the image processing steps of
formerly unknown image processing problems by using past experiences and plan adaption.

Case-based object recognition for fungi identification and the developed similarity measures
are described in0(. A system for case acquisition of visual forms and case mining has been
developed in207]. Similarity-based Learning of case description of visual objects is described
in [203. Finally, in Perner 194 is built a bridge between the work in CBR and the one in
dissimilarity classification which became recently important in pattern recognition.

3.3.2.1 Case Representations for Images

Usually the main types of information concerned with image interpretation are image-related
and non-image-related information. Image-related information can be the 1D, 2D, or 3D images
of the desired application, while non-image-related information can include information about
image acquisition (e.g., the type and parameters of the sensor, information about the objects,
or the illumination of the scene). The type of application determines what type of information
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should be considered for image interpretation. For medical CT image segmentatign [
patient-specific parameters such as age, sex, slice thickness, and number of slices were used. In
[117] is considered the type of sensor for a railway inspection application and his system used it
to control the type of case base that the system used during reasoning. How the 2D or 3D image
matrix is represented depends on the application and the developer’s point of view. An image
may be described by the pixel matrix itself or by parts of this matrix (a pixel representation).

It may be described by the objects contained in the image and their features (a feature-based
representation). Furthermore, it can be described by a more complex model of the image scene
comprising objects and their features as well as the object’s spatial relationships (an attributed
graph representation or semantic network).

Processing the image through multiple components and describing it by higher-level repre-
sentations can reduce the number unnecessary details in its representation. This allows more
noise tolerance and may speed up the retrieval process but may require additional modeling of
the image content, which is difficult and time-consuming. Also, it requires processing steps
that are often computationally intensive. Thus, the necessary abstraction level of the image
information should be carefully chosen.

The abstraction problem is solved inl[1] by using a four-level case hierarchy and different

case bases for different sensor types. Stored at the lowest level of the hierarchy are the objects
described by features such as their location, orientation, and type (line, parabola, or noise)
parameters. The next level consists of objects of the same channel within the same subcluster.
In the following level the subcluster is stored and the highest level stores the entire image scene.
This representation allows cases to be matched on different granularity levels. Because the
entire scene may have noise distortions and imprecise measurements, the influence of noise can
be reduced by retrieving cases on these different levels.

Grimnes and Aamodgf] developed a model-based system for the interpretation of abdom-
inal CT images. The image’s content was represented by a semantic network where concepts
can be a general concept, a case, or a heuristic rule. Poorly understood parts of the model are
expressed by cases and can be revised during system usage by the learning component. The
combination of a partial well-understood model with cases helps to overcome the usual burden
of modeling. The learning component is based on failure-driven learning and case integration.
Non-image information is also stored such as sex, age, earlier diagnosis, and social condition.

In both of these systems, CBR is used only for the high-level component. We have studied
different approaches for the different processing stages of an image interpretation system. For
image segmentatiori | 1], we studied a pixel-based approach and also a feature-based approach
that described an image’s statistical properties. Our results show that the pixel-based approach
can yield better image segmentatidr{]. For the high-level approach in an ultra sonic image
interpretation system, a graph representaticii was used.

Representing images at multiple levels of abstraction presents some technical challenges.
When representing an image with a high-level abstraction rather than the image matrix itself,
some information will be lost. Abstraction requires deciding which details of an image are
necessary. If only some objects are seen at one time, then we might think that one detail is not
of interest since our decision is based on a limited number of objects. This can cause problems.
Therefore, storing the images themselves is always preferable but requires high storage capacity.
Also, the different representations at each abstraction level require different similarity measures.
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Figure 3.16: Image Representation and Similarity Measures

3.3.2.2 Similarity Measures for Image Interpretation

Images can be rotated, translated, different in scale, or may have different contrast and energy
yet still considered to be similar. In contrast, two images may be dissimilar because the objectin
one image is rotated by 180 degrees. The concapvafiancein image interpretation is closely
related to that of similarity. A good similarity measure should take this into consideration.
Classical similarity measures do not consider invariance. Usually, the images or the features
have to be pre-processed in order to be adapted to the scale, orientation, or shift. This process is
an additional and expensive processing step that needs some a priori information, which is not
always given. Matched, linear, Fourier, and Wavelet filters are especially useful for invariance
under translation and rotation§4]. There has been a lot of work done to develop such filters
for image interpretation. The best way to achieve scale invariance from an image is by means
of invariant moments, which can also be invariant under rotation and other distortions. Some
additional invariance can be obtained by normalization (to reduce the influence of energy).
Depending on the image representation (see Fify we can divide similarity measures
into:

e pixel (Iconic)-matrix similarity measures;
e similarity measures for comparing strings;
o feature-based similarity measures (numeric, symbolic, or mixed type); and,

e structural similarity measures.

Because a CBR image interpretation system must also account for non-image information
(e.g., about the environment or the objects), similarity measures are needed that can combine
non-image with image information. In. 94 is described a first approach for doing this.

Systematic studies on image similarity have been conducted by Zamperoni and Starovoitov
[279. They studied how pixel-matrix similarity measures behave under different real-world in-
fluences such as translation, noise (spikes, salt and pepper noise), and different contrast. Image
feature-based similarity measures have been studied from a broader perspective by Santini and

39



4

Contral
Strateey
Highr Lewel Image _ Caze-Based Reasoning for o Case
_ Irite rpretati on - Learning Objects P Tk Specific
Information

¥
Intermediate Lewl
Extraction of Case

CaeBased Reasaning for
Feature Selection and hMapping

»

F

Eepresentation
k
¥ HMon-I
Lowns Ll Image CaseBazed Reasoning for |4 T mage
Se gmentation Farameter Learning T ormation

F 3

Figure 3.17: Architecture of a Case-Based Image Interpretation System

Jain 237. To our knowledge, these are the only comprehensive studies on image similarity.
Otherwise, every new conference on pattern recognition contains proposals for new similarity
measures for specific purposes and different kinds of image represeniatin 197, [167],

[259, [16]. While there was some simultaneous research on image similarity in the CBR
community (e.g.,459), this work has also not achieved new insight. In our view, images are a
special type of information source that require special similarity measures, and these measures
require more rigorous analysis.

3.3.2.3 The Architecture of the Case-Based Image Interpretation System

The architecture (Fig3.17) that uses CBR on all levels of an image interpretation system is pro-
posed in [94]. The system subdivides into a run-time part and a maintenance and learning part.
During run-time, the system uses CBR strategies to reason over images while the maintenance
and learning part attempt to improve system performance off-line.

3.3.2.4 Image Segmentation

Most CBR image interpretation systems (e.g6][[65]) select among different image process-
ing chains but they do not control the algorithm itself. This in accordance with most knowledge-
based image interpretation systems described in the computer vision literature, which select a
processing chain that best fits the current image analysis problem. This approach requires a
large enough library of image processing procedures and special image processing knowledge.
However, modern segmentation techniques contain numerous control parameters, which
can be adjusted to obtain optimal performance. Parameter selection should be done using a
sufficiently large test data set that represents the entire domain well enough to support a general
segmentation model. Obtaining a suitable test set is often impossible, which means that the
segmentation model does not fit the data well and must be adjusted to new data. Also, a general
model does not guarantee the best segmentation for each image, but instead it guarantees an
average best fit over the entire set of images. Finally, differing image quality (e.g., caused
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by variations in environmental conditions, image devices) requires adapting the segmentation
process accordingly. This necessitates equipping the segmentation component with learning
capabilities, which can incrementally acquire segmentation model knowledge.

The system uses a case-based approach for parameter learning, in which formerly processed
cases contain their original images, their non-image information (e.g., image acquisition pa-
rameters, object characteristics), and their image segmentation parameters. Finding the best
segmentation for the current image is done by retrieving similar cases from the case base. Simi-
larity is computed using non-image and image information. The evaluation component will use
the most similar case for further processing. If two or more cases have the same highest similar-
ity score then the first of these cases is used. The image segmentation parameter associated with
the selected case will then be given to the image segmentation component, which will segment
the current image (see Fi§.19. Images with similar image characteristics are assumed to
yield similar good segmentation results when the same segmentation parameters were applied
to these images. Superior performance for this approach has been demonstrated for CT image
segmentation[95. This approach is sufficiently flexible to be used for other applications and
will therefore be used for Hep-2 cell image analysis.

3.3.2.5 Feature Selection

Feature selection is concerned with learning the most important (symbolic) features, while fea-
ture extraction is responsible for locating those features in the image and finding their values.
From the preprocessed, segmented, and labeled 1-D, 2-D, or 3-D image matrix we can extract
low-level or primitive image features that are corners, extended edges, textured regions, rib-
bons, the 2 1/2-D sketch, and semantic clusters of edges and regions. The number of primitive
features that can be extracted from the image content is limited (e.g., color, gray level, spatial
relations, motion). Understanding the image’s content requires mapping those primitives to the
desired symbolic features. In current approaches to image interpretation, performance degrades
when new objects are encountered that may require the extraction of “shape primitives” not
known to the system. To overcome the bottleneck of predetermined and static object features,
automatic acquisition of new features using a learning approach is necessary, particularly for
flexible image interpretation processes.

Therefore, one may introduce for the system a library of feature extractors that can calculate
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all possible features. In the next step, the system selects from these features the necessary
features describing the desired symbolic feature.

3.3.2.6 Signal-to-Symbol Mapping and Feature Selection

It is seldom the case that one low-level feature describes the right meaning of one quality of
an object. Often a combination of a few low-level features is nhecessary to express a symbolic
feature likefine speckledwhich is a combination of low-level features such as number of small
objects, object sizes, and their gray-level. In these situations, a mappmdaf{level features

to the symbolic feature is needed. This problem is concerned with the selection of the right fea-
tures (feature selection), their parameters, and the creation of a mapping function (classification
function).

The problem here is to select this subset of features from a large/complex feature set that rep-
resent best the symbolic feature by means of classification accuracy or intra/inter class distance,
see Fig.3.19 To solve this problem, we use an induced decision tre&][ This approach
acts as feature filter for the image interpretation process. Once a new feature is discovered the
low-level features are calculated from the image and labeled by the symbolic feature. The pro-
totypes of the other features are taken and applied together with data from the new feature to
the induction algorithm. The resulting set of rules is used as a feature selector.

3.3.2.7 High-Level Unit

The case representation of an image’s high-level information can differ among images. This
ranges among semantic networks]| graphs [.94], and decision trees’D3. Image interpre-
tation problems always have some hidden taxonomy that, if discovered, can be used to help
model the problem. An ultrasonic image showing a defect typek might show a crack of a

specific subclass such asck_under_pressure. XTo classify this type of crack as a specific
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subtype might prevent the classack from having large variations which can help to improve
the classification results.

To discover these concepts we have found decision tree induciicih énd incremental
conceptual clusteringlP7], [199 very suitable. Based on the available cases we used C4.5
[199 to induce a tree for indexing the case base. This approach differs from the one presented
in [111], where also a tree for case indexing was induced, in that we will incrementally update
the tree structure based on newly discovered cases. Leaves in the tree where no class overlap
occurs will remain as terminal leaves, while a leaf with class overlap will be pruned back until
a predefined number of samples remain in the group covered by this leaf.

The query case may be clustered through the tree until it reaches a leaf node. If the leaf
node is labeled with its class, then that class is assigned to the query. If it is not a final node
then similarity will be calculated between all cases belonging to this node. We do not divide
these cases into clusters but instead incrementally update the index structure when entering a
new case.

3.3.2.8 Maintenance and Learning

An important focus of recent CBR research is on how to develop strategies for obtaining com-
pact, competent case-bases, as a way to improve the performance of CBR sysiemd- |

though maintenance approaches have not yet been extensively studied for image interpretation
systems, they will play an important. Grimnes and Aam@&at fnention that maintaining the

case base in ImageCreek is complex, and that knowledge base maintenance methods are crucial
for making the architecture scale. The main problem is handling the different types of knowl-
edge. Jarmulaki[l1] takes into account case addition, splits the clusters into groups of fixed
size, and represents them using a prototype to speed up the matching process. 1Pékner [

[195 takes into account case addition, learning of case classes and prototypes, and higher order
constructs. We focus here on topics that, until now, have only been addressed as more specific
problems.

3.3.2.9 Learningin a CBR System

CBR management is closely related to learning. It aims to improve the performance of the
system. LeiX be a set of cases collected in a case li2Be The relation between each case

in the case base can be expressed by the similarity gatuel he case base can be partitioned
into n case classes:

n
c:CB=|JG (3.15)
i=1

such that the intra-case class similarity is high and the inter-case class similarity is low.

The set of cases in each cla@xan be represented by a representative who generally de-
scribes the cluster. This representative can be the prototype, the mediod prian selected
case. Whereas the prototype implies that the representative is the mean of the cluster which
can easily be calculated from numerical data. The mediod is the case whose sum of all dis-
tances to all other cases in a cluster is minimal. The relation between the different case classes
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C can be expressed by higher-order constructs expressed e.g. as super classes which give us a
hierarchical structure over the case base.
There are different learning strategies that can take place in a CBR system:

e Learning takes place when a new caskas to be stored into the case base such that:
CBn11 =CByU{x}. That means that the case base is incrementally updated according to
the new case.

e It may incrementally learn the case classes and/or the prototypes representing the class

[199.

e The relationship between the different cases or case classes may be updated according
the new case classes¥/].

e The system may learn the similarity measured, [201].

3.3.2.10 Learning New Cases and Forgetting Old Cases

Learning new cases means just adding cases into the case base upon some notification. Closely
related to case adding is case deletion or forgetting cases which have shown low utility. This
should control the size of the case base. There are approaches that keep the size of the case base
constant and delete cases that have not shown good utility within a fixed time windajw [

The failure rate is used as utility criterion. Given a period of observatidhadses, if the CBR
component exhibit$/ failures in such a period, we define the failure ratd,as M/N. Other
approaches try to estimate the “coverage” of each case in memory and by using this estimate to
guide the case memory revision process.

The adaptability to the dynamic of the changing environment that requires storing new cases
in spite of the case base limit is addressed’fx]. Based on intra class similarity it is decided
whether a case is to be removed from or to be stored in a cluster. Case deletion in a pre-
determined time window based on failure resuits4 might not be appropriate for image
interpretation because a failure might mean that, instead of the retrieved case being erroneous,
there is some relevant knowledge that we could not describe using features. Also, cases that
occur infrequentlyi(e., that have not been used recently) should be recognized by the system.

The causes for case deletion or addition might differ from other CBR applications - since
images may be distorted and very noisy it might not be useful to store distorted representations.
Determining which representation is distorted is sometimes not easy even if you have seen only
a few images, and it is usually necessary to have domain knowledge that must also be built up
over time.

Imprecise or noisy measurements can be caused by some defects of illumination, the image
acquisition device, or the object itself. If the image analysis cannot adapt to these measurements,
or the reasoning process cannot handle it, then this might cause failure results. However, if this
is a systematic event then it might be worthwhile to store the recent case in the case base.

The last fact comes from the real world environment. It is not possible to determine all
real world influences priori. Thus, developers prefer to incorporate cases into a case base
instead of forgetting them. Although case bases can grow very large, instead of forgetting
cases, we would rather subdivide the case base into frequesitlyarely used cases. This
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requires addressing the issue of how should the addition of cases into one of these two case
bases be controlled, as well as their respective reasoning processes.

3.3.2.11 Learning of Prototypes

Learning of prototypes has been described!itd] for a flat organization of a case base and

for a hierarchical representation of a case base ##][ The prototype or the representative

of a case class is the most general representation of a case class. A class of cases is a set of
cases sharing similar properties. The set of cases does not exceed a boundary for the intra class
dissimilarity. Cases that are on the boundary of this hyper-ball have a maximal dissimilarity
value. A prototype can be selectadoriori by the domain user. This approach is preferable
when the domain expert knows for sure the properties of the prototype. The prototype can be
calculated by averaging over all cases in a case class or the median of the cases is chosen. If
only a few cases are available in a class and subsequently new cases are stored in the class, then
it is preferable to incrementally update the prototype according to the new cases.

3.3.2.12 Learning of Higher-Order Constructs

The ordering of the different case classes gives an understanding of how these case classes are
related to each other. For two case classes which are connected by an edge similarity relation
holds. Case classes that are located at a higher position in the hierarchy apply to a wider range
of problems than those located near the leaves of the hierarchy. By learning how these case
classes are related to each other, higher-order constructs are i€&dnt [

3.3.2.13 Learning of Similarity

By introducing feature weights we can put special emphasis on some features for the similarity
calculation. 1t is possible to introduce local and global feature weights. A feature weight for
a specific attribute is calleldcal feature weight A feature weight that averages over all local
feature weights for a case is callghbbal feature weightThis can improve the accuracy of the
CBR system. By updating these feature weights we can learn similafity. [

3.3.2.14 Case Acquisition and Case Mining

A CBR system for image classification needs to have some particular features with respect to
images. These features result from:

¢ special requirements of visual knowledge acquisition (image-language problem) and
¢ the need to transform an image’s numerical data into a symbolic description.

The main problem with images and their translation into a language is that the knowledge
about an image is usually tacit. To make this knowledge explicit is often hard. Sometimes the
meaning of a word does not correspond to the correct meaning of the image. Therefore, it is
necessary to support the operator in an efficient way.

Most case-based image interpretation systems do not pay attention to this problem. The
only functionality these systems provide is visualization of the image or the processed image.
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Usually, new case knowledge is obtained via manual acquisition with the expert. This is a
time-consuming and sometimes boring process for both the system developer and the expert.
A CBR system for image interpretation should have a special case acquisition tool, such as
the one detailed in1[21]. By using a questioning strategy and evaluating the answers given by
the expert, the expert or operator is forced to specify the right knowledge for image interpreta-
tion. The questioning strategy is designed to force an expert to explain what distinguishes one
object from another and to specify the right property for the object. Recently, this problem has
received attention for e-commerce applications. Automatic questioning strategies are important
for acquiring customer requirements in e-commerce applicativond pecause the customer
acts alone on the net. A special case acquisition tool for image segmentation was described in
[195. With the help of this tool the user can control the parameters of the image segmentation
algorithm. Simultaneously, he can view the segmented image and, if he is satisfied with the
segmentation quality, he can store the parameters of the image segmentation algorithm together
with the case description in the case base. Acquiring cases by tracing objects in images and
learning more compact cases from these examples by case mining is describéd.in [

3.3.2.15 Competence of Case Bases

An important problem in image interpretation concerns system competence. We follow the
definition in [245 and define the competence of a system as the range of target problems the
system can solve. It is often not clear to the computer vision community what problems the
desired algorithm can solve. So we have to find a way to describe the competence of a system.
This differs from what is usually understood about this problem in CBR. Competence is de-
scribed based on statistical properties such as case-base size, density and distribution, or group
coverage and group density. But what if some groups overlap? Smyth and McKe&fija [
argue that these groups have shared competence and can be linked together in some way.
However, we can also view it as having a poor description of the target problem. Based on
this description we may retrieve a similar case but its solution application to the query image
may be low in quality. By investigating the failure we may learn that we did not consider a prop-
erty of the environment or maybe we could not specify it because it was not contained in the
description of the target problem. Therefore, the system performance decreases. The measures
described in$(] and [245 only view competence based on the coverage of the problem space.
How do we know that cases in group 1 and group 2 belong to the same target problem group?
Proximity in problem space does not imply that they belong to the same problem group; mis-
classifications can occur because the patterns overlap. We argue that system competence must
also account for the misclassification of the target problem based on the problem description.

3.3.2.16 Control Strategies and Monitoring System Performance

An important issue in maintaining an image interpretation system involves the controlling and
monitoring of system performance. The system is a complex system comprising different pro-
cessing components (e.g., image analysis, feature extraction and high-level image interpreta-
tion). The quality of the results of one component strongly depends on the quality of a preceding
component. Several possible strategies exist for improving system performance.

Control without Feedback (Local Optimization)
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Table 3.4: Logical Scheme of Performance Control

Segmentation (S) Feature Extraction (FE) Interpretation (1)} Action

Good Good Good No Action

Good Good Poor Optimize |

Good Poor Good Impossible

Good Poor Poor Optimize FE and examing
effects on |

Poor Good Good Impossible

Poor Good Poor Impossible

Poor Poor Good Impossible

Poor Poor Poor Optimize S, then re:
examine the performande
of the other components

The simplest approach is to adjust the performance of each component without considering
the others. Each component - segmentation, feature extraction and selection, and interpretation
- acts alone. No interaction between them is allowed. Image segmentation performance may
be determined by subjective evaluation of the segmentation result as done by an expert, by
calculating the similarity between the original and segmented images, by interclass distances
for feature extraction, or by classification error. This strategy has the advantage that the control
of the system is simple. Nevertheless, it cannot optimize system performance because only
local optimums can be achieved for each single component.

Control with Feedback (Global Optimization)

If after local optimization the performance of a component could not be improved or is not
satisfactory, the control algorithm will lead the learning process to the preceding processing
component in an attempt to further improve its performance. This process stops if the first
processing component is reached and if no improvement could be established after local opti-
mization.

The logical scheme in Table 1 shows us how control is guided. If the performance of all
components is good, no action has to be taken. If the interpretation component’s performance
is poor, then its performance needs to be optimized. We assume that it is impossible for a
preceding component to perform poorly while its successor components perform well.

3.3.2.17 Conclusions

We have given an overview about case-based reasoning for image processing and image under-
standing. A more detailed description of this topic can be found in Peré}. [

3.4 Bayesian Techniques

Bayesian analysis ], 16, 31, 43,52, 55,69, 75,152,141, 170, 176, 208 220, 266 uses explicit
probability models to incorporate general as well as scene-specific prior knowledge into the data
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(hypothesis, parameters) processing and provides a consistent framework for solving many of
processing tasks. It consists of four successive stagésAg, 31]):

e The underlying (true, hidden) data prior probabilitg(X) distribution construction,
which should capture general and scene-specific prior knowledge Kbduts seldom
possible to model the global features, so usually this prior describes the local characteris-
tics of X.

e The joint probability density (likelihood function)p(Y|X) specification, usually by
standard physical considerations. This likelihood function which describes an interaction
between hidden and observed data may depend on unknown parameters that need to be
estimated from the data.

e The prior probability and the likelihood are combined applying Bayesian theorem to
form the posterior densityp(X|Y) O p(Y | X) p(X) (the normalization constamqt(Y) =

Jp(Y[X) p(X)dX+# 0).

e Aninference abouX is based omp(X |Y) givenY. If we ignore the existence of unknown
parameter values, then the usual method is to find the maximum posterior (MAP) estimate
of X and then to extract from it the features of primary interest.

A major strength of the Bayesian approach is that the resulting estimates are not point estimates
but the complete posterior probabilities acquired either analytically, using numerical integration
or more often using sampling-based methods (variety of Markov chain Monte Carlo (MCMC)
methods). Provided with large sample from a density the mathematical form of that density
can be approximated using curve estimation (kernel density) methods. From these posterior
probabilities it is possible not only select some point estimates if required but also interval
estimates, standard deviation, probabilities of error classification, etc. Bayesian inference is
identical for different solved problems, what stands in contrast to other inference approaches
that involve special techniques and principles for different tasks to be solved. On the other hand
its criticism stems from the necessity to specify sometimes rather artificially the prior proba-
bility p(X). If such a prior probability about the estimated quantity is not available but the
data distribution itself is known, the maximum likelihood criterion can be used. In the opposite
case, when the prior information is the only available the maximum entropy criterion emulates
nature preference for higher entropy solutions. Bayesian analysis often requires numerical in-
tegration however recent computer intensive sampling methods of probability density function
(pdf) estimation enables their wide use in many different application areas.

3.4.1 Several Sets of Data

For several sets of measurements generated independently of each other, the resulting poste-
rior probability density function is identical whether it is constructed sequentially or from
combined samples, i.e.,

n

P(X|Y1,...,Yn) O p(X) u p(Yi|X) . (3.16)
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3.4.2 Marginal Posterior

If X is partioned into subsetX = (X5, Xp), the corresponding marginal posterior can be ob-
tained as follows:

POGIY) = [ POXIY)d%= [ p(Xa|%0.Y) p(%6|Y)X, (3.17)

Marginal pdf for the observation can be obtained from the averaged conditional pdf (cpdf) as
follows:

p(Y) = [ p(Y|X) pOX)AX . (3.18)

3.4.3 Bayesian Estimation

Bayesian estimation of a set of model parametérgassuming known cpdb(X|Y) and prior
pdf p(X)) is based on the Bayes theorem

p(Y[X) p(X)

POSY) = T 00 T) p(X) X

(3.19)

If the measurements are conditionally independent the general estimation foBri@acan be
written using conditional marginals

p(X Y™ = Mhes POY] Y&Y, X) p(X) (3.20)

 Mier PO Y®REDX) p(X) dX

Alternatively the estimation formula can be reshaped to the recursive form:

p(Y: YUY X) p(X Y1)
J (Y Y= X) p(X [YI=1)dX
p(Y, YD X)
p(Y; [Y(=1))

p(X|Y")

p(X Y=y (3.21)

where p(Y; |Y(r_1)) is the one-step-ahead prediction for the next random variable using old
parameter estimatiop(X | Y1),

Point estimators characterizing the posterior pdf can be based on different pdf measures such
as dispersion, skewness, median, etc., or values that minimize the mathematical expectation of
some loss function or the average risk. The optimal estimate for the quadratic loss function is
the conditional expectatiok{X | Y}, for the absolute error loss function it is the median. If the
probability p(X € R |Y) =a is fixed to somea value, it is possible to find Bayesian region

(not necessarily uniqueq .
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3.4.4 Bayesian Decision Criteria

The maximal a posteriori probability (MAP) decision minimizes the probability that any data
element in the lattice will be misclassified:

w"=arg max p(w|Y) (3.22)
we{Q}"

for the loss function

L0, opt) =1— |_| d(wy — Wi opt)
IS

wherew is an interpretation index or an unobservable data elemenit sraldata index set. In
the case of a multiresolution MAP the loss function is

k k
L(w,00pt) = 1- [T[]8(00" — ') -
vk 1€

The MAP estimate can be too conservative because the loss function is maximal whenever any
data element is incorrectly classified. The Bayes risk

R= Z z L(wawopt) p(w,Y)
w
is minimal if and only if all data elements are correctly classified, i.e., the MAP estimator
is the Bayes estimator for the zero-one loss function. Computing the MAP estimate requires

minimization of a discrete functional with many local minima. Exact minimization is intractable
S0 some approximation like the simulated annealing has to be used.

The compound maximal marginal a posteriori probability MMAP (MPM) criterion is

w' ={w:iel; o =argmaxp(wl|Y)} (3.23)

weQ
for the compound loss function
L(w, topt) =1 . (0w — G opt)
, Wopt) = 1L ——~ — Wiopt) -
The compound a posteriori mean or a posteriori marginal expectation (AM, AME) is as follows:
W' =% wp(w|Y)={w i lu =% wp(w|Y)} (3.24)
w

for the compound square loss function

1
L(wa(ﬂopt) = n Z(wi —wi,opt)z .

le

Specific applications of Bayesian techniques depend oK fiieexposition. For exampl¥ are
unobservable (unspoiled) data whleare corresponding measurements in the data restoration
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or reconstruction task¥ can be a hypothesis or a data model in hypothesis testing or optimal
model selection applicationX is a class label or class label set in context-free, contextual or
discontinuity (edge) detection tasks, etc.

3.4.5 Bayesian Networks
3.4.5.1 Bayesian Network: Basics

Graphical models have been used in different research fields to visually represent interactions
between multiple variables and parameters involved in the processes to be modelled. For in-
stance, interactions between pixels in image and video data have been represented using graphs
for applications such as image restoration or segmentatitiy [For probabilistic graphical
models, the graph and its links between the variables are interpreted as probabilities. Proba-
bilistic Graphical Models or PGM, by its visual representation, help then to infere statistical
decision in a system.[. 7, 116. Similitudes between probabilistic bayesian networks and neu-

ral networks based on non-probabilistic graph however exist and have been underlindd in [
Bayesian networks[7, 37] represent a particular class of probabilistic graphical models that is
restricted to Directed and Acyclic Graphs. This specific type of graph is defined hereatfter.

Definitions. In a graph, aredgelinks two random variableX; andX, (cf. fig. 3.20(a)). A
directed edgalefines the connection in only one direction. In fi§20 (b), the direction of

the edge defines the variab{g as beingoarentof X,. In this caseX; is seen as ahild of X;.

When considering a set of variables linked by directed edges showing no cycle (i.e. no feedback
cycles appear in the graph cf. example fig20(c)), the graph is then calleddarected acyclic

graph (DAG). A more exhaustive set of definitions and properties related to Bayesian network

(@)

(b) (©) (d)
®) ®)
) ()

Figure 3.20: Examples of graphs showing the interactions between variblg@g Edge, (b)
directed edge, (c) directed Acyclic graph (DAG) and (d) undirected graph.

can be found in the following book and tutorialll2, 97].

Joint Probability. Let consider a DAG with a set of variabl¢X;} and their corresponding
parents{Pg; }. The joint probability of{X;} is then defined as:

n

P0G, -+ ) = [ 2(XPa)
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For example in fig3.20(c), the variableX; has no parent:
P(X1|Pay) = P(X1)

The variables<; andX3 have one parerX; then:

P(Xo|Pag) = P(X2|X1)

P(Xs|Pag) = P(Xa|X1)
The last variable4 of the graph has two parents andXs hence:

P(Xa|Pas) = P(Xa|X2, X3)
The joint probability encoded in the DAG fi§.20(c) can then be written as:
P (X1, X2, X3, Xa) = P(X1) - P(Xa|X1) - P(X|X1) - P(Xa|X2, X3)

From the joint probability any other density can be inferred using Bayes law and integration.
For instance, from the previous example, we can compute:

200) = [ [ [ 206.%, X, Xe) 0% 0% dXs

or

P XX, X, Xa) = XX

JP(X1, X2, X3, %) dXq
However solving the exact inference in an arbitrary Bayesian network can be difficult. As an
alternative, approximations of the inference can be computed using simulation methods such as
Monte Carlo, or variational methods17, 116].

3.4.5.2 Using Bayesian Network in Multimedia applications

This section proposes a few references where bayesian networks are used to infer semantics
from mutimedia data.

Inferring Semantics from multimedia data. Naphade and Huang 5 have proposed to

map low level multimedia features to high-level semanticsnaittijects (for multimedia ob-

jects) such as Explosion, Mountain, Beach, Outdoor, etc. High-level semantic concepts such
as Outdoor are difficult to infer directly from features. By modelling probabilistic dependences
between multijects, high level semantics can however be modelled. For instance, an image can
more easily classified as Outdoor if some of its regions are detected as Sky or Be&ch [
Bayesian networks, renamed in this contextragtinets are then used to model such depen-
dencies between the multijects (cf. fig.21(a)). Similarily, in 48], shots of rallies in tennis
video broadcasts are inferred from two other events: the detection of the racket hits in the audio
data, and the detection of large view over the court in the image data (cB.#g(b)). More
complex Bayesian networks are usediri(, 180 to infer semantics from sport videos.
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Figure 3.21: (a) High level semantic concéptitdoor is detected using Bayesian Network
[179. (b) Tennis rallies are inferred from the detection of racket hits in the audio data, and
classification of shots showing views over the court from visual d&ija [

Object-based video segmentation. In [264], a bayesian network is used to model the interac-

tions between the displacement field, the intensity-based segmentation field, the spatio-temporal
segmentation field and the observed images in the sequence. The proposed approach aims at
improving hierarchical approaches where regions lost from an initial intensity segmentation
cannot be recovered by a second process using the motion field for the grouping of regions.

Even/Object Classification. In[10€], a Bayesian Network is used to model each human mo-
tion activities such as Walking Standing Up, Sitting Down and Others. Visual data from a static
camera are used to infer each class. Ia]], objects such as Pedestrian, Motorbike, Cars or
Truck are detected from video data using a bayesian network .

3.4.6 Naive Bayes

If we return to equatio3.16 we can see that with certain assumptions this can give us a classi-
fier for a class labe}j € Y for examples described by featudes, ..., an}:

n
ynB = argmaxP(y;j) ﬂp(ai 1Y;) (3.25)
yieY i=

This is the Naive Bayes or Simple Bayes classifier and the key restrictive assumption is
that the attributesy are independent of each other, i.B(gj|ax) = P(&). This will almost
never be true in practice so it is perhaps surprising that the Naive Bayes classifier is often very
effective on real data. One reason for this is that we don’'t need to know the precise values for
the probabilitie(y;j), we simply require the classifier to be ableamk them correctly. Since
Naive Bayes scales well to high dimension data it is used frequently in multimedia applications,
particularly in text processing where it has been shown to be quite acciiate [

In text classification, the conditional probabilities can be estimate®(layyj) = nij/n;
wheren;j is the number of times that attributesoccurs in those documents with classification
yj andn;j is the number of documents with classificatipn This provides a good estimate
of the probability in many situations but in situations whayeis very small or even equal to
zero this probability will dominate, resulting in an overall zero probability. A solution to this
is to incorporate a small-sample correction into all probabilities called the Laplace correction
[177]. The corrected probability estimateRga;|yj) = (mij + f)/(nj + f x ng), whereny; is the
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number of values for attributa. Kohavi et al. [.24] suggest a value of = 1/mwheremis
equal to the number of training documents.

3.5 Feed-forward Neural Networks

Feed-forward Neural Networks (FNNs) represent, by far, the most widely known, analysed and
used type of Artificial Neural Network (ANN). Historically, FNNs were introduced as models of
biological neuronal networks in which nodes corresponded to neurons and connections between
them to synapses (7. However, further developments have proceeded largely independently
of any biological modelling considerations. Actually, FNN are general-purpose, flexible, non-
linear, mathematical models successfully used, within a supervised training strategy, in a large
variety of application fields.

In the following sub-sections, we introduce the fundamental concepts of FNN, outlining
the former architectures and learning rules that have been introdBeestptronand Adaptive
Linear Network}, and subsequently focus on the more evolved FENar Back-Propagation
NetworkandRadial Basis Function Networkand discussing their application to CBIR.

3.5.1 Basic Concepts

A Feed-Forward Neural NetworkFFNN) is an adaptive processing system, structured into a
series of successive layers of parallel, non-linear units (also qadléels neuronsor processing
elementy in which the data flow is strictly feed-forward. There are no connections (the so-
called synapsesfrom any unit to other units of the same layer, nor to units of the previous
layers, nor to units more than one layer ahead: the output of each node is sent as input only to
the next layer in the network structure.

An example of FFNN with three layers is shown in Fig@&2 the network consists af
input units, each of which receives the input vectorroélements and is connected with each
of the s hidden units of the middle layer. The output of these units, which have no contact with
the external world, is sent to the m output units of the third and last layer.

When there is only one layer of nodes that act as input and output units, the network is said
to be asingle-layerFNN. Otherwise, if there are at least two layers (input and output layers
- more than two, when one or more hidden layers are present), the network is said to be a
multi-layer FNN (MLFNN or MLF network).

The basic element of a FNN (just like any Artificial Neural Network) is the artificial neuron
which is a simple processing unit;, and whose computation can be illustrated as shown in
Figure3.23 It involves calculating the so-callemet inputas the sum of the unit inputs,
weighted with the valuegj associated to the corresponding synapses. A certain threghold
is subtracted to this suhand a functionf, calledactivation functionis applied to the obtained

3In the literature, the input layer is identified, in some cases, with the input vector, i.e. supposed consisting
of one unit for each input element. However, no processing would be done by such units: each of them would
propagate its input to the next layer without any modification. For this reason, in the following, units of this kind
are not considered as element of the network and the next layer is defined as input.

4The threshold value can be considered as the weight of an additional synapse along which a constant signal of
value—1 or+1 travels. In the latter case, we talk about bias.
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Figure 3.22: Example of FNN architecture with three layers: input, hidden and output layer.

value:

g = fi(net) = fi( i WijXj — 6;) (3.26)
=

An output functionF can be applied to the activation valaegrom (3.26), which represents the
excitement degree of the unit, in order to obtain the final output of the node:

o = Fi(a) (3.27)

The functionF is generally the identity function, while the activation function can be linear,
sigmoid or hyperbolic. The net input constitutes the internal activity level of the node and
applying the threshol@; to this value produces an affine transformation that can be seen, for
instance, in the 2D Euclidean space for a two-input neuron as shown in Bididre

fxl

~ l°

‘W.
Input 4 x2_12>@_> f |l—
0;
U

\ X Wim

Figure 3.23: lllustration of an artificial neuron computation.

3.5.2 Perceptron

The Perceptron is the earlier and simpler FNN which was introduced by Rosenblatt in the 1958
[221]. Starting from the work of McCullough and Pitts, Rosenblatt proposed the first supervised
training algorithm orlearning rule capable of finding the optimal weight vector for a simple
classification task.
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Figure 3.24: lllustration of the affine transformation produce by the threghold

The Perceptron architecture consists of a single processing element reigth-valued in-
puts, the hard-threshold function as the activation function and a binary autj#ch of the
two output values;+1 and 0, corresponds to one pattern class and is associated to one of the
two regions, in the input spad®", delimited by the hyperplane the processing unit is trained
to look for.

The training algorithm, proposed by Rosenblatt and known aBdheeptron learning rulg
consists of an iterative correction of the input weights based on the evaluation of the error
made by the network. Considering a training set composquexfamples of proper network
behaviour, i.e. {(Xp,dp)}p,p = 1,...,P, wherexp is the input vector andl, is the desired
binary output, for each training example, the weight adjustment is performed according to the
following rule:

Wi = W +ApW; (3.28)

wherei = 0,...,n considering the bias ag, Xpi is thei-th component of thg-th input vector,
w; is the weight along theth synapsispy, is the actual output of the network for tipeth input
vector and is the so-calledearning rate i.e. a value that regulates the amount of the weight
update.

According to the Perceptron Convergence Theoreni]] the above described algorithm
is guaranteed to find a solution, i.e. the optimal weight vector, to the learning classification
task whenever a solution exists. However, this convergence is valid only for linearly separable
classes: in this case, the algorithm succeeds in finding the separating hyperplane. Moreover,
evaluating the number of iterations of the algorithm is not possible, while it has been proved
that, for some training sets, this number can be exponentmbimd p [13]. If the classes are
not linearly separable, the Perceptron algorithm moves cyclically from one weight vector to
another, without supplying any information about the correctly classified examples. In cases of
this kind, a single threshold neuron is not enough and networks of neurons are to be considered.

3.5.3 Adaptive Linear Elements and Delta Rule

While Rosenblatt was developing the Perceptron, Widrow and Hoff were studying another kind
of neuron, called ADAptive Linear Element (ADALINE), which is similar to the Perceptron ex-

56



cept for the activation function: the ADALINE output depends linearly from the net input, i.e.
the activation function is the identity functiofifd]. This condition changes the inner meaning
of the weight update procedure, used for training, which is quite similar for the two models.
Considering the training sé{xs,dn) }h,h=1,..., p, for each sample pattern, the network out-
put is compared to the target and the weights are adjusted in order to move it to the desired
output. However, while the Perceptron algorithm tries to eliminate the wrong classifications,
the ADALINE output approximates the correct output at every step of the training algorithm.
In this way, the procedure achieves a better separating hyperplane in terms of the minimum
distance along a parabolic surface.

The iterative technique for distance minimization consists in the gradient descent along
the cost function surface. This cost functids, is defined as the sum of the square errors,
Ep = (dp —0p), on the entire training set:

E= i (dp — 0p)? (3.30)
p=1

and its minimization is performed applying, at each step, the expressiéf) but changing the
weight vectomw by following the opposite direction of the error gradient, i.e.:

Aw = —nUE (3.32)

wheren is the learning rate and is chosen in order to maintain weight changes small. This
means that the single weight is updated according to the following expression:

Apw; = — 1= (3.32)

which can be explicitly expressed as the expresstond. In particular, indicating the differ-
ence between desired and actual outpuigktin training pattern adp, i.e.

the equationd.29 can be written as

This notation gives the name to the learning rule above defined, actually it is also adelli@d
rule in addition towidrow-Hoff ruleor Least Mean Square (LMS) rule

The error functiorkE can be represented in thedimensional space, whose single direction
constitutes the variation space of each synaptic weight. If the training set is linearly separa-
ble, this function has a surface like a paraboloid with only one minimum point at null gradient.
Then, the learning procedure consists in descending the surface toward this point with a trajec-
tory defined by the initially chosen weight vector. If the pattern is not linearly separable, the
delta rule yields a descent along the error surface without reaching the point with null gradient,
but supplying only a partial solution to the classification task, i.e. only some classifications are
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correct. Some problems, for instance wrong solutions even when the classes are linearly sepa-
rable, can be avoided using a more general neuron with a non-linear activation function which
is derivable. In this case, the weight update expressi@¥) becomes:

DpwWi = NdpXpi f' (nety) (3.35)

wheref is the activation function and the apostrophe stands for derivative. Moreover, networks
of one output layer of linear or non-linear neurons can be obtained for more complex problems
(MADALINE I, MADALINE II) [ ].

However, there exist some functions that cannot be approximated by a linear nor by a non-
linear neuron nor by a network of only one layer of neurons. The typical problem used as
an example of this conclusion is the approximation of the logic function exclusive OR (XOR)
[1664: it requires at least two separating hyperplanes for correctly discriminating the input
patterns and this situation can be achieved by considering a multilayer network with two linear
input units and one output unit. Although the importance of the presence of at least two layers
was known since the 1960s, a training algorithm for the training of the internal neurons was still
not available. This lack was filled with the introduction of the Error Back Propagation algorithm
which is discussed in the next sub-section.

3.5.4 Error Back-Propagation Networks

The Error Back-Propagation Networks (EBPY[] are, undoubtedly, the most popular and used
neural model. The EBP denomination refers to the learning rule used for supervised learning,
while the network architecture corresponds to a MLF, with an input layer, an output layer and
any hidden layers. The EBP algorithm is considered an extension to the MLF of the delta rule
and for this reason is also callgéneralized delta ruleln particular, the EBP learning rule is
defined for neurons with non-linear, differentiable activation function and allows the adaptation
of an arbitrary number of internal layers in addition to the output one. This feature, together
with the working simplicity, the application generality and the computing power made the EBP
algorithm the cardinal model of the connectionist approach.

A brief description of the learning rule is given here. For a complete derivationosge [
The main idea of the algorithm, as the name says, is back-propagating the error computed at the
output layer to the inner units by introducing ideal feed-back connections. Through a recursive
process, the inner synaptic weights are adjusted according to the amount of their influence to
the network global output.

Let us consider the simpler case of a MLF network with only two layers: an input layer with
r units and an output layer withunits. Extending the above introduced notation to the MLF
network with multiple outputs{(xp,dp)}p, p = 1,...,P is the training setxp; represents the
j-th element of the input vectet, dp; is thei-th element of the desired outpwi;; is the weight
along the synapse from theth input unit to the output unitor from the j-th element of the
input vector to the-th input unit,op; the output of the-th unit for thep-th training pattern, the
total error functiork is evaluated by considering only the results of the output units as follows:

E=Y E (3.36)



whereE, is the error committed on the singteth pattern, i.e.

Ep= %_;(dpi —opi)? (3.37)

The EBP algorithm performs the following weight update after the processing of the entire
training set:
ApWij = NdpiOp;j (3.38)
where
Opi = (dpi —0pi) f/ (nety)  if i is an output unit

Opi = T/ (netyi) S dpk-Wii  if i is an input unit (3.39)

k runs along the output units amds the learning rate.

The weight change is performed as shown in Figdit& which highlights the ideal feed-
back connections.
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Figure 3.25: lllustration of the weight update for thh input unit.

The more general case, with more than two layers, can be easily obtained by extending the
input layer rule to the additional layers.

To summarise, application of the EBP learning rule consists in two sequential passes for
each training vector:

1. forward pass - first, the input is applied to the network and the output of each layer is
forward propagated to compute the global response of the network, i.e. theoylue
k=1,...,s, for each output unit. This output vector is then compared to the target and
thedpk, k= 1,..,s, values for the output units are computed.

2. backward pass - the delta values computed for the output units are recursively propagated
backward to the internal layers until the input layer and the weight vectors are adjusted
according to the rule3(39).

The basic version of the algorithm performs the weight update operation after processing
the entire training set. This behaviour corresponds to the so-dadlethor per-epochsipdat-
ing. The algorithm proceeds until a stop criterion is met, e.g. the error falls under a predefined
threshold, changes in the gradient value are small or a predefined maximum number of epochs
is reached. Aronline or per-patternversion of the algorithm is also available, with the same
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kind of stopping criteria. In particular, weight updating, performed using only the information
provided by the current pattern, produces an error minimization procedure which does not cor-
respond exactly with a gradient descent. Although, for small values of the learning rate, batch
and online version coincide, the noise added by instantaneous correction of the weights might
help the algorithm convergence to the global minimum.

Actually, contrary to the delta and Perceptron rules, EBP does not assure the convergence
to the point of minimum error and might get stuck in local minima. In fact, for a MLF network,
the error function yields a surface that is more complex than that for a single-layer network.
There can be many local minima due to weight vectors permutation that have the same error
value or to an annulment of weights of opposite sign or, moreover, to the sum of many non-
linear components in the input space. In this points, the error value is very small and the weight
update is not enough to let the network get out of them. Another critical situation is provided
by plateau where the first derivative is close to zero and the weight update is minimal. There
have been various attempts to establish straightforward sufficient conditions for guaranteeing
the absence of local minimas |, , 274). In practise, the conditions found lead to networks
with many input or hidden units. However, the resulting architectures do not seem to generalize
very well because of the large number of free parameters to be adjustedR[iles of thumb,
used when the network get stuck in local minima and the error is still too large, consist in
changing the learning parameters, in restarting the training algorithm with new initial weights
or in adding some noise during the search for minimum. In particular, the latter solution might
be helpful for the network generalization capability, but might cause the network to diverge if
the error surface considerably changes.

Another expedient used to improve network convergence is the addition of the so-called
momentumi.e. a factor used to take into account the previous weight changes. The update rule
becomes:

Awij (t 4 1) = ndioj + aAw;j(t) (3.40)

whered, calledinertia coefficient weights the influence of the additional factor anstands
for the iteration step. Using the momentum allows the choice of larger values for the learning
rate and, even if there are no proofs that it actually improves the network convergence, various
authors report a great increase of the convergence speed. In fact, besides the convergence,
another critical aspect of EBP training is that it is very slow. Many variants of the basic version
of the algorithm have been proposed aiming to improve the convergence speed or the error
surface exploration. Generally, however, the efficacy of a certain variant depends on the shape
of the same surface, hence estimating the best clagc®ri is very difficult.

The algorithms proposed by various authors can be divided in the following categories:

e Algorithmic changesmethods that try to optimise the weight update procedure, without
changing the network architecture. Examples are the Resilient Back-Propagatidn [
the Delta-Bar-Delta algorithm1[L(}, Quasi-Newton methods5f, 215, the Levenberg-
Marquardt algorithm §1] and so on.

e Heuristics applied to the algorithntechniques that change the way of applying the al-
gorithm, without trying to optimise it. They are generally based on experimental results
instead than theoretical considerations. Examples are the methodology of the Concurrent
Gradient P6] or the Selective Update algorithn®d].
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e Regularization algorithmsalgorithms that change the error function, adding a cost factor
to the weights in order to minimize the network architecture. Examples are Weight Decay
[9C] or the Rumelhart Regularizatior? 1.

e Techniques applied to the netwodhanges of the network computation that do not mod-
ify the problem definition, for instance modification of the activation function.

Peculiar properties of the MLFNs are the universal approximation and the learning and gener-
alization capabilities4].

The presence of an input layer and, in case, of any hidden layers is the main features of these
networks. The inner layers, in fact, assure an internal encoding of input vectors that allows
the transformation of anp-dimensional input vector in a nem-dimensional vector, where
m is the number of output units.{]. The Universal Approximation Theorem belongs/] to
this observation: it is an important principle that motivates mathematically the use of neural
networks. However, it states only the existence of a network for any function approximation,
without supplying any suggestions regarding the network architecture. For this reason, the
theorem has limited practical implications.

On the other hand, the universal approximation does not imply the learning capability of
the network: it is true that a network can approximate any function with the desired accuracy,
but there are no evidence that the network successes in learning this approximation. In the field
of Machine Learning, a theory regarding the so-called MUE&rnability has been developed
[18]. It states that the learning capability consists in the learning algorithm ability to find
correct values of the free parameters in order to assure the desired approximation accuracy.
This ability seems to be related to various network features, such as network architecture, the
training algorithm itself and the training set. In particular, while the generalization capability
is linked to the amount of information contained in the training set, the network learnability is
more likely related to the network typology and to the problem complexity. Unluckily, the only
theoretical results in this field are upper bounds for the involved variabigsdonsidering a
two layers network withr input units andV synaptic weightsP patterns in the training set and
a desired approximation error fthe following condition needs to hold:

w r
P> O(? |0925)

As a consequence, a network with the above mentioned features cannot learn and generalize
well if less than";v patterns are used during the training phase.

Another problem regarding training is the network adaptability which affects its stability:
these two properties, in fact, can be inversely proportional, i.e. high plasticity of the network
can correspond to low stability of the same. Actually, a neural network is asked to adapt to sig-
nificant external events while remaining stable after processing not meaningful estabikty-
to-plasticity dilemma[173. On the contrary, it is possible that high flexible network, which
has already learned a certain knowledge during the training phase, loses some of this informa-
tion when a new pattern is presented. This phenomenon is knosetastrophic interference
and has been investigated by various authdrs1,[87, 8€] which have outlined that determin-
ing factors might be the pattern presentation order, an intrinsic overlap of the patterns and the
typology of the training procedure.
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Dealing with the network generalization capability, it consists in the ability of extrapolating
significant information even from a limited number of training patterns and in the correct be-
haviour on pattern never seen before. This is also a feature of other adaptive models used, for
instance, in the Pattern Recognition field, however, the larger number of free parameters is a dis-
tinguishing characteristic of MLFNs. From a Pattern Recognition point of view, EBP networks
can be compared to tretatisticalor Decision Theoreti@pproach: they areature-basedi.e.
they learn a mapping between input and output vectors, the hyperplanes yielded by each units
can be thought adecision boundarieand the output units perform a non-linear discriminant
function that distinguishes a class from the others. Moreover, it can be proved that an EBP
network, trained by minimizing the square error, gives a direct estimation of Bayes a-posteriori
probability function P60, , 79, , 277). Various studies have shown the equivalence be-
tween EBP networks and the statistical approach to pattern classification and, for this reason,
these networks has been seen as just alternatives to classic statistical methods. On the contrary,
neural models offer many advantages with respect to above mentioned methods as they are
non-linear, non-parametric and model-free systems able to deal with non-stationary data and
non-Gaussian distributions (7. Many studies, performed to compare the two approaches,
have outlined the superiority of the ANN, in term of both theoretic, 5, 227] and applicative
power [L26, 47, ) ]

3.5.5 Radial Basis Function Networks

Radial Basis Function Networks (RBFNs) emerged as a variant of MLF network in the late 80’s,
even though their fundamentals involve much older pattern recognition techniques such as clus-
tering, function approximation and spline interpolatian §]. Their use in pattern classification

is based on the Cover theorem on the separability of patterns, which states that nonlinearly
separable patterns can be separated linearly if the pattern is turned nonlinearly into a higher di-
mensional spacelf]. Applying this theorem to an ANN means to find a network that converts
the input patterns to a higher dimension after that each of them can be classified using only one
layer of neurons with linear activation functions. Actually, RBFN topology is very simple, i.e.

a two layers architecture of different typology neurons: the input layer consists of non-linear
units whose activation function corresponds t@dial basis functionRBF), while the output

layer consists of linear units (just like the ADALINE).

Figure 3.26: Example of a RBFN architecture.

RBFs are a special class of functions whose characteristic features are the radially symmetric
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shape and the monotonic decrease of their response according to the distance from a central
point. Mathematically, a RBF can be defined as follows:

®([x—cll,0) (3.41)

wherex is an input vectorg is the RBF central pointy is a real positive scalar determining
the RBF width, i.e. how spread the curve is, dnidrepresents a distance measure, usually the
Euclidean norm. The most common form of RBF used is the Gaussian function:

2
% —c
g2

O(x) = exp—

while other possible choices are:

) (3.42)

®(x) = [|Ix—c||*logo®

®x) = (|x—c||*+0%)~°

The use of RBF for the input layer of the network serves to perform a fuzzy or soft template
matching between the input vector and a stored pattern, i.e. the weight vector: the output of each
input unit has maximum value when the input exactly coincides with the weight vector, other-
wise, as the difference between the two vectors increases, the neuron output approaches zero.
The rate of this decrease is governedsby~or this reason, RBFN are to be considered a hybrid
kind of network for classification, with a firprototype-basethyer, i.e. formed by neurons that
extract, from the training set, a set of prototypes used as terms of comparison during the classi-
fication, and a second feature-based layer, like the EBP networks. In particular, in the literature,
RBFN are generally considered as a smooth transition between Fuzzy Inference Systems and
ANN, because each input neuron can be seen as supplying a degree of membership of the input
pattern to the class of the corresponding prototyjid. [This interpretation confers to RBFNs
the advantages of ANNs for mathematical tractability, especially for the back-propagation of
the error and of the Fuzzy Systems for the incorporation of expert knowledge into the training
procedure, especially in the assigning the initial value to the network parameters.

Many training algorithms have been tested for RBFNs within the supervised training strat-
egy based on the minimization of the error functiondr8@. In the initial approaches, each data
sample was assigned a RBF. This solution proved to be expensive in terms of memory require-
ment and in the number of parameters. Moreover, exact fit to the training data often causes bad
generalization performance. Other approaches choose randomly or assumed known the hidden
unit weights and calculate the output weights by solving a system of equation whose solution is
given in the training setj’]. However, the matrix inversion required in this method is compu-
tationally expensive and could cause numerical problems in some situatiocnc(ref31], the
RBF centres are uniformly distributed in the data space and the function to be modelled with
the network is obtained by interpolation. Ih79, less basis functions then given data samples
are used and a least squares solution that minimizes the interpolation error is defined. Orthog-
onal least squares using Gram-Schimdt is propose@dani74. Expectation-Maximization
algorithm using a gradient descent algorithm for modelling the input-output distributions is em-
ployed in [35]. A two-stage training procedure is proposedin§] and often used in practice.

In the first stage, the input data is used alone to determine the parameters of the RBF using
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unsupervised methods, e.g. clustering algorithms such dsrieans In the second stage, the
RBF are kept fixed and the second layer weights are optimised.

Dealing with the number of input units, various procedures have been employed for finding
a suitable network topology. Usually, topology adaptive approaches use an additional regular-
ization term to the cost function, depending on the number of input uitils Dther methods
employ cluster merging!|/4] or splitting [26].

RBFNs are capable of universal function approximation, like EBP netwdrkd.[ How-
ever, they can offer advantages over the EBP in some applications, e.g. an RBFN can be easier
to train than an EBP network. In particular, the possibility of choosing suitable parameters for
the input units without having to perform a full non-linear optimisation of the network is one
of the main advantages of RBFNs. There are many potential applications for ANN where unla-
belled input data is plentiful while labelled training patterns are in short supply. In these cases,
the two-stage training process of RBFN can be particularly useful, since the determination of
the non-linear representation, given by the first layer, can be done using a large quantity of
data. In particular, in order to obtain good generalization performance, the number of these data
points should be large compared to the number of parameters to be determined.

3.5.6 Feed-Forward Neural Networks in Multimedia Analysis and Recog-
nition

The computing strength and simplicity together with the application flexibility make the FFNN

one of the neural models most used in practice. The usually implemented architectures are

multi-layer with only two layers of input and output units.

The two typologies more largely used are EBP and RBF networks. However, FFNN are,
often, combined in modular or hierarchical way to improve the classification or recognition
capabilities of the neural system obtained. The hierarchical combination can involve ANN of
different topologies obtaining in this way a higher degree of flexibility and reliability. These
features are very important in solving highly complex problems which cannot be faced with
a well-defined scheme. Optimised solutions are, on the contrary, required in these cases and
can be achieved with neural architectures able of adapting to changes in problem representation
model and able to supply adequate performance thanks to a hierarchical data analysis, reduction
and understanding’p, 25, 24].

FFNN applications in multimedia processing range from restoration and compression to
object detection and recognition, from visual data segmentation to image understanding. For
accurate review, see$2, 61].

Restoration is a highly complex task because of conflicting criteria that are to be satisfied
(e.g. resolution versus smoothness). FFNNs are primarily used in this field as filters for re-
moving noise and can have relatively simple or highly complex architectures. Examples are
the regression FFNN used ifif] and the modular FFNN used i [Jto mimic the behaviour
of Kuwahara filter. FFNNSs, trained for edge detecting, are also used for image enhancement
[36, 209.

In image compression FFENN approaches, consisting, for instance, in vector prediction
[219 267 or in wavelet coefficients identificatior {], have to compete with well-established
techniques such as JPEG, which could be used for comparison. The major advantage of ANNs

64



is that their parameters are adjustable and this feature may give better compression rates when
training is performed on specific image material]f

Good results have been obtainedinmage segmentation which can be actually seen as
a classification task: some studiessf, ] have shown FFNN application validity in this
field and the better performance obtained in comparison to other pattern recognition methods.
Actually, the advantage of neural network approaches over classical statistical methods is the
relative insensitivity to selection of the training sets, which is reinforced by generalization.
Applications go from medical imagind 4, 20€ to character recognitiorfi, 263.

As powerful pattern classifiers FFNNs are highly used and give best resutigliimedia
detection and recognition[137]. In this field, several different tasks can be identified, some of
which are discussed in more details in the following.

The conversion of paper-based document information to electronic format is important for
automated document delivery, document preservation and many other applications. FFNN have
shown good capabilities in performing both handwritten and tygiedacter recognition: the
EBP model has been applied in several studies§3, 4, 159. In [137], four different typolo-
gies of ANNSs, including EBPN, RBFN, Probabilistic Networks and Self-Organizing Maps, are
compared: experimental results have shows that the RBF network has the highest classification
accuracy and requires intermediate amounts of memory and training time as compared to the
other neural models.

Fingerprint classification is one of the matured biometric techniques, used to people veri-
fication. It consists in a coarse-level matching of fingerprints, categorized according to the flow-
like ridges, which form a special pattern in the central region of the fingergrift A complete
evaluation of FFNN application to this task is given it], in which EBP and RBF models
are compared with other statistical methods (e.g. Euclidean Minimum Distance and k-Nearest
Neighbor). A simple EBP model has been adopted in several other studigsip5, 1,
while in [11§] it is introduced a pyramidal architecture constituted by several EBP network,
each of which is trained to recognize fingerprint belonging to different classes.

FFNN is often used in order to facilitate detection or recognition of high-level features such
as human faces. lface detection the task is finding out if an image contains or not a face: it
is an essential step for face recognition and can also be used alone in security and interface ap-
plications. The solutions proposed in literature usually work on sub-images or sliding windows
of limited dimensions (e.g. 20x20 or 30x30) and try to improve the neural system performance
using some optimisations methods in data pre-processing or in the network architecture. In
[104], a Polynomial Neural Netwoi(PNN) is combined with the Principal Component Analy-
sis (PCA) and applied to cluttered images. A PNIN{] can be viewed as a generalized linear
classifier, consisting of only one layer of neurons, which uses as stimuli not only the measure-
ments of the input pattern but also the polynomials of these measurements. In order to reduce
the number of parameters of the network, PCA is used for dimensionality reduction, but assur-
ing also the improvement of classification efficiency thanks to feature extraction. A PNN is also
used in P47, in combination, in this case, witHidden Markov Mode{HMMs) for first detect
and then recognise faces in the images. A neural detector of frontal view faces is proposed in
[5]: an EBP network is applied to sub-images 30x30 after a normalization process whose target
is eliminating illumination variability for all possible face positions and adjusting the dimen-
sionality of the processed data. For frontal face detection, 4x4 multi-resolution intpgeset
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images) are scanned iin], both in horizontal and vertical profile with a running window: first

a SVM is trained to separate face from non-face patterns, then a first ensemble of EBP networks
is trained for detecting patterns that fall between the cheeks and a second ensemble is trained
for separating patterns that fall between eyebrows and the chin. A FFN network set is also
adopted in?2: first NN-based filters are applied to examine each 20x20 location in an image

at several scale, looking for locations that might contain a face; an arbitrator is then used for
merging detections from each filter and eliminating overlapping detections. A modified RBF
neural network is used in.B5: modification consists in adoption of PCA coefficients, more
exactly the distance of input pattern from the feature space detected with PCA.

In face recognition the problemis to find a person in a database of faces or recognise people
in real time. There are two main aspects to face in this task: determining whether someone is
known (determining database membership) and identifying the person (determining identity).
In [53], both question are solved using the discrete cosine transform to extract features from high
dimensional facial data, an EBP network for determining identity adbanterpropagation
neural network $5] for determining database membership. A couple of EBP networks and
a fuzzy system are combined iA5] in order to improve the decision making process. One
EBP network is trained to separate authorized face images from non-face and non-authorized
face images. Another network of the same typology is used as eye detector to determine the
possible location of eye for a given image. Finally, a fuzzy system is implemented as the final
decision making stage by utilizing the recognition rate provided by the neural networks. A
Probabilistic RBF (RBFP) is introduced if]: it is derived from the combination of RBF and
Probabilistic Neural Networkstrying to incorporate all the advantages of these two network
typology while lowering their demerits. A RBFP model consists of 3 layers: the first layer is a
nonlinear processing layer, generally consisting of selected centres from training examples; the
second layer selectively sums the first layer output (generally the corresponding weight values
are 1's); the last layer is just the output layer.

A significant body of work, both theoretical and experimental, has established the viability
of ANNs as a useful technology fapeech recognition the neural models mostly used in
this field are dynamic, i.e. able to take care of temporal sequences of paRemgrent and
Time Delay Neural Networkshowever FFNNs are also used, particularly to augment speech
recognisers whose underlying structure is essentially that of Hidden Markov ModelsAn [
a MLF network is introduced to control an adaptive search technique, using observable features
(e.g. each hypothesis score), for a HMM-based continuous speech recognition systefaln |
three-layered FFNN is used to implement speech-frame prediction together with a Markov chain
used to modulate the network weight parameters. A hybrid HMM-NN model is proposed in
[27] in order to exploit at the same time the ability of dealing with temporal patterns, typical of
HMM, and the pattern classification power of ANNs. A HMM-NN looks at a temporal context
and uses an intrinsic discriminative training method, the EBP method, potentially achieving, in
so doing, a better separation of similar acoustic classes. Recently, to exploit ANN capability
to mix input features coming from different input sources without any particular assumption on
their statistical distributionMulti-SourceNN have been introduced for speech recognitioi,[
aiming to use the synergy of different and partially complementary speech parameterisations in
order to improve accuracy of the acoustic matching.

In the medical field FFNN applications involve clinical functions of diagnosis, progno-
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sis and survival analysis, the medical domains of oncology, critical care and cardiovascular
medicine. An accurate review of the evidence of healthcare benefits assured by the use of
ANNSs is made in[53. Several examples of FFNN applications can be drawn from the medical
imaging field [.89. A modified EBP neural model is used ia{9 for the detection of micro-
calcification clusters in digitised mammograms. Different features, extracted from the spatial
and spectral domain are provided as input to the network trained by using the EBP algorithm
modified with Kalmar filtering. EBP networks have been applied in several other studies for the
same diagnosis problemT, , 156. In[190, a two-level FFNN network is used to detect

lung cancer nodules found on digitised chest radiographs: a first level EBP network is trained
for detecting suspected nodule areas on low-definition images, then these zones are analysed by
a second level EBP network that acts as classifier, in order to confirm or refuge the presence of
nodules. Also in this case, there are many other examples in literature of FFNN applications for
the resolution of the same problert]), , 151]. A more complicated architecture than that
introduced in the abovementioned study is the one adopted’]rfqr the characterization of

brain volume density iComputer Tomographgr Magnetic Resonance Imagingwo different
typologies of ANNs, namely SOM and EBP network, are hierarchical combined in two levels
and separately trained to perform the basic recognition task. Aim of this approach is exploiting
the differences among the extracted features to improve the classification capability, the ability
of easily change the number of features, the possibility to implement a full 3D approach, in
terms of spatial geometric relations among the neuro-functional structures. In the first level, a
set of SOM modules, one for each feature, are used for clustering the feature values in crisp
classes. The second level is composed by a single EBP module that receives the outputs of
the lower level, refining the classification and giving the final response. The validity of this
approach has been confirmed by another application consisting in the categorization of cerebral
microemboli in ultrasound images: a similar architecture is used to recognize solid or gaseous
microemboli on the basis of a set of opportunely selected morphological and statistical features
[41]. Other hierarchical combinations of EBP network are widespread in the medical imaging
field [64, 230, 214.

In CBIR context, MLF networks are mainly used to estimate the similarity measure, based
on extracted image features, for ranking the relevance of images in the database to a query im-
age. Various approaches have been proposed in the literature which differ from each other in
the network topology, which can be EBP or RBF, in the granularity of feature extraction, which
can interest image regions or the image as a whole, and in the typology of retrieval, which can
be non-adaptive or adaptive, i.e. with user’s feed-back. Moreover, the network training phase
can be executed before system application or embedded in the retrieval procesq, ting
validity of FNN application to CBIR is explored: using low-level visual features of the interest-
ing regions contained in the image (e.g. eccentricity, compactness, elongation), different neural
models, EBP, RBF>eneral Regressionetworks and SVM (see section 3.4) are trained with
the aim of approximating a similarity functiog(u,v), whereu andv are the feature vectors
of the two images used as input to the networks. Each trained network is, then, employed for
non-adaptive image retrieval. Experimental results, obtained on two different image typologies,
seem to validate the adoption of neural models for predicting the user’s notion of similarity.
An EBP model together witB-splinesfor affine object representation is employed:in f] for
non-adaptive content-based image and video retrieval, developed locating an initial number of
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candidate objects and then refining the selection with curve matching. B-splines are used for
shape representation of the object contours, obtained from image segments; a three-layers EBP
network is trained to construct a prototype object database. The representation of curve proto-
types is used as input to the network and its output is assigned to each primary object class, in
order to constrain the search procedure into a small subset of classes. A two-layers EBP network
is used in [07] to estimate the similarity measure from a set of image features, regarding colour
and location information of image regions. A regional division method is performed by quan-
tization, boundary processing and labelling. #7{], a neural network approach to adaptive
region-based CBIR is proposehlultiple Instance Learning2 7 is integrated with the query
refining process to learn two regions of interest from the user’s feedback. Both local colour and
local texture features are extracted from candidate image regions and two EBP networks (one
for each region) are used to estimate, from the feature vector, how much the regions meet the
user’s concept. Given a query image, the most similar images in the database are first retrieved
using a distance-based metric, labelled according to the user’s feed-back and then used as train-
ing set for the networks. The feed-back and learning are executed iteratively until user satisfies.
A similar approach is proposed in{7: a cascade of non-homogeneous networks is used to
progressively model image similarity through continual relevance user feed-back, in this way,
the user directly modifies the query characteristics by specifying his desired image attributes
in the form of training examples. A Self-Organizing Tree MagJ] and a Learning Vector
Quantization 125 are adopted to generate the prototypes in the form of local data clustering:
the former to create the relevant image prototypes and the latter to modify the same taking into
account the negative samples. The prototype vectors obtained in this way are passed to a RBFN
for the evaluation of the similarity between each prototype and the input vector corresponding
to image in the database and, in so doing, ranking the database. The RBFN is a single-pass
network, since each prototype vector is assigned as the centre of the corresponding Gaussian
unit in the network. A RBF network is also used i/[] for ranking retrieved images in an
adaptive CBIR. Images are represented by means of feature vectors consisting in low-level vi-
sual feature (colour, texture and shape) and coefficients obtained with the biorthogonal wavelet
decomposition. During retrieval, the query feature vector is compared with the vectors of the
database images and compared metric values are obtained. These values are combined using
the RBFN for the ranked list of retrieved images. User’s judgement of each retrieved image is
then received and used to incrementally train the neural network.

Other application field includeemote sensind 239, 19 [ 70], motion tracking [139, 159,
multisensor signals processingy/d).

In recent years, a great attention has moved to the challenging task of generating, extracting
and retrieving information simultaneously from different medias, including text, audio, image
and video. FFNN application in this field is promising thanks to the capacity of ANNs to deal
with stimuli coming from different sources without assuming any hypothesis on their distribu-
tion. Some examples of FFNN application to the processing of signals of different types fall
in theaudio-video conversion and synchronizationwhich include joint audio-video coding,
speech recognition and speech-assisted synchronizatipnilhe goal of speech-driven facial
animation is to synthesize realistic video sequences from acoustic speechl./nd three-
layered EBP network is used for voice to image converdigmear Perdition Coding Cepstrum
parameters{13 are given in input to the network and the mapping is learned by backpropaga-
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tion training, with both voices and image parameters which are synchronized to each other. For
speech recognition, an EBP network is adoptedLinl] to fuse information from the acoustic
channel and information from the visual one. The pixel values of the mouth image are fed to
the network directly, without extracting any kind of features. The network is trained to estimate
the voice spectrum from the image. The spectrum obtained as a result is then combined with
the true spectrum and the couple is fed to a recognition system.

3.6 Convolutional Neural Networks

The termConvolutional Neural Network&NN) is used to describe a neural architecture well-
suited to two dimensional input data (e.g. digital images), based on spatially localized neural
input. Lecun and Bengid’] have highlighted three architectural ideas common to CNNSs : local
receptive fields, shared weights (weight averaging), and often spatial down sampling. Figure
3.27shows an architecture of a convolutional neural network.

Figure 3.27: An architecture of a 5 layer convolutional neural network

A typical CNN consists of a set of layers, each one containing one or more planes. The input
imagel is first approximately centered and normalized before entering at the input layer. Thus,
each unitin a plane receives input from a small neighborhood in the planes of the previous layer.
In fact, the layers alternate between convolution layers with feature @j@tps

Cia = 9(1ky QWi + Bi) (3.43)

and non overlapping sub-sampling layers with feature n$‘§1ps
Sa = 9(1 Lig Wia + ©by) (3.44)
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whereg denotes an activation functioB,, respectivelyb the biasesW andw the weights,
I}, theit™ input and! |}, the down sampled" input of the neuron of groug of layerl , © a
matrix composed by 1 an® denotes a two dimensional convolution.
Processing units with identical weight vectors and local receptive fields are arranged in a spatial
array, creating an architecture with parallels to models of biological syster?8.cR&CNN im-
age mapping is characterized by the strong constraint of requiring that each neural connection
implements the same local transformation at all spatial translations. In other words, the weights
forming the receptive field for a plane are forced to be equal at all points in the plane. This dra-
matically improves the ratio between the number of degrees of freedom in the system and num-
ber of cases, increasing the chances of generalizatiai.[Thus, each plane can be considered
as a feature map implementing a fixed feature detector that is convolved with a local window
scanned over the planes in the previous layer. The number of planes will denote the number
of features that had to be learnt. These layers represent the convolutional layers.The first layer
implements non linear template matching at a relatively fine spatial resolution, extracting basic
features of the data. Subsequent layers learn to recognize particular spatial combinations of
previous features, generating "patterns of patterns” in a hierarchical manner. If down-sampling
is introduced in the model, then subsequent layers perform pattern recognition at progressively
larger spatial scales, with lower resolution. A CNN with several down-sampling layers enables
processing of large spatial arrays, with relatively few free weights.
Training a CNN is achieved in a supervised manner by using the standard back-propagation
algorithm adapted for CNN. Given input patterrthe hidden uniiq (neurong of the jt" filter)
receives net input (cf. Figur229) :

Vi =g(ht ) = 9(% > WheER o+ by) (3.45)

te{T11,...,O7...,Tnl‘nl}

where :
e gdenotes an activation function;
° Vj% denotes the neural output of the hidden ygiassociated to the pattepmn

. vvtjk denotes the weight of the hidden ujdt depending of the filter size withe {T11,...,0, ..., Ta; n, },
with n1 denoting the maximal number of elements of the filter;

¢ bj denotes the bias of the filtgr
The cost functiork of the CNN is defined by:

lomm g2
E=5 > —oh) (3.46)
(TP
where(}, denotes thé" output associated to the pattgn

The derivative oE with respect to the" weight of the filter connecting thg" feature array to
theith output array is defined by:

OE H H H oM
e —sumyplCip — 9(hio)1g (0 Vi b s (3.47)
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which, when used in combination with the familiar gradient descent weight update rule,
yields:

WEDY S Vi (3.48)
Hp
where :

After describing the generalized delta rule associated to convolutional neural network, we
propose to expose, in the next section, how CNNs can be used for a face processing task.

3.6.1 CNN Applications

In this section, we present various applications proposed in the literature that make use of CNN.
These applications include face detection, face recognition and handwritten recognition.

3.6.1.1 Face Detection

Human face detection is today a very hot research topic, due to its wide range of possible
applications, such as security access control, model-based video coding, content-based video
indexing or advanced human and computer interaction. It is also required as a preliminary step
to face recognition and expression analysis. Numerous approaches for face detection have been
proposed in the last years, many of them being described and compared in two interesting recent
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surveys by Yangt al. [27F and Hjelmaset al. [99].

In fact, the approaches that have exhibited the best results are based on the use of neural
networks. The first advanced neural network-based face detector has been proposed by Rowley
etal.[224]. In their approach, the author are able to detect faces at any degree of rotation in the
image plane. Their system employs multiple networks: a router network first processes each
input window to determine its orientation and then uses this information to prepare the window
for one or more detector networks. In fact, the network assumes that the input window con-
tains a face and is trained to estimate its orientation. The inputs to the network are the intensity
values in a 20« 20 pixel window of the image (which have been preprocessed by a standard
histogram equalization algorithm). After the router network, the window is aligned to make
any face that may be present upright. The neural network based upright frontal face detection
system denotes a retinally connected neural network that examines small windows of an image
and decide whether the window contains a face or not. The system arbitrates between multiple
networks to improve performance over a single network. It first applies a set of neural network
based filters to an image, and then uses an arbitrator to combine the outputs. The filters exam-
ine each location in the image at several scales, looking for locations that might contain face.
The arbitrator then merges detection results from individual filters and eliminates overlapping
detections.

Various papers on face detection based on neural networks have followed the path of Row-
ley such asq7, , 227.

Finally, Garcia and Delakis’/[] have shown that an efficient face detection system does not
require any costly local illumination correction before classifying image areas as face or non
face, and that the input image could be processed as a whole, with a fast pipeline of simple
convolutions and subsampling modules implemented by a CNN, thus greatly speeding up the
detection process. Very high detection rate are obtained with a particularly low level of false
positives, as demonstrated on difficult test data sets, while running at approximately 12 frames
per second on a conventional desktop.

3.6.1.2 Face Recognition

Various techniques for CNN-based face recognition have been proposed in the literature. In
this document, we focus our interest on the two main ones. The first one has been elaborated
by Lawrence [ 36 and in this approach, the author is interested in robust face recognition with
varying facial detail, expression, pose, etc. However, the author does not consider invariance
to high degrees of rotation or scaling, assuming that a minimal preprocessing stage is available
if required. The system explores a local image sampling technique to reach a partial lighting
invariance. Then, a Self Organizing Map (SOM) is used to project the image sample repre-
sentation into a quantized lower space (the author specifically uses a three dimensional SOM
corresponding to three output features). In fact, the local image samples are passed through the
SOM at each step, thereby creating new training and test sets in the output space created by
the SOM (each input image is now represented by three maps, each of which corresponds to a
dimension in the SOM). The size of these maps is equal to the size of the input image divided
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by the step size. Then, a CNN is trained on the newly created training set, before classification.
The author shows that this method is able to efficiently perform classification, and consistently
exhibits better classification performances than the eigenfaces appréaagh [

In the second CNN-based approach, the author describes how exploiting CNN to realize robust
face analysis such as the one presented by FasellThe author proposes a data driven face
analysis approach able to extract features relevant to a given face analysis task and that is ro-
bust with regard to face location changes and scale variations. This is achieved by deploying
CNNs, which are either trained for facial expression recognition or face identity recognition. In
fact, two CNNs are combined, so that they may complement each other by delivering context
information. This is for example the case with facial subject, when attempting facial expres-
sion recognition, as each individual has not only a different facial physiognomy leading to a
specific facial action display, but furthermore also performs facial expressions with individual
intensities. In fact, the approach combines two CNNs for the task of face recognition and facial
expression by using a two layer MLP in order to merge the extracted data for improved and
personalized facial expression recognition. By this way, the authors prove that, by combining
facial expression with facial recognition, the results of facial expression recognition have been
improved by about 20% when using the synergy that stems from processing the output of the fa-
cial expression and face recognition networks a fusion network where the extracted information
is combined.

3.6.1.3 Visual Document analysis

It is well known that CNNs are a powerful technology for classification of visual inputs arising
from documents because spatial topology is well captured by Ci{INEffectively, the author
reviews various methods applied to handwritten character recognition and compares them on
a standard handwritten digit recognition task. CNNSs, that are specifically designed to deal
with the variability of 2D shapes, are shown to outperform all other techniques. To be able to
reach handwritten digit recognition, a similar conception as the ones described on the previous
sections is needed. However, although CNNs have been proposed for visual task for many
years, they are still not popular in the engineering community. That is why some papers have
proposed new methods for such networks that are much easier that previous techniques ad allow
easy debugging. More information can be foundinyj].

3.7 Ensemble Techniques

The key idea in ensemble research is; if a classifier or predictor is unstable then an ensemble of
such classifiers voting on the outcome will produce better results - better in terms of stability
and accuracy. While the use of ensembles in Machine Learning research is fairly new, the idea
that aggregating the opinions of a committee of experts will increase accuracy is not new. The
Condorcet Jury Theorem states that:

If each voter has a probability p of being correct and the probability of a majority of voters
being correct is M, then p > 0.5 implies M > p. In the limit, M approaches 1, for all p > 0.5, as
the number of voters approaches infinity.
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This theorem was proposed by the Marquis of Condorcet in 1784 [a more accessible
reference is by Nitzan and Paroustgi]. We know now thatV will be greater tharp only if
there is diversity in the pool of voters. And we know that the probability of the ensemble being
correct will only increase as the ensemble grows if the diversity in the ensemble continues to
grow as well. Typically the diversity of the ensemble will plateau as will the accuracy of the
ensemble at some size between 10 and 50 members.

In ML research it is well known that ensembling will improve the performance of unstable
learners. Unstable learners are learners where small changes in the training data can produce
quite different models and thus different predictions. Thus, a ready source of diversity is to
train models on different subsets of the training data. This approach has been applied with great
success in eager learning systems such as Neural Netw#iksr[Decision Trees{(]. This
research shows that, for difficult classification and regression tasks, ensembling will improve
the performance of unstable learning techniques such as Neural Networks and Decision Trees.
Ensembling will also improve the accuracy of more stable learners skkeNBr Naive Bayes
classifiers, however these techniques are relatively stable in the face of changes in training
data so other sources of diversity must be employed. Perhaps the most popular choice for
stable classifiers is to achieve diversity by training different classifiers on using different feature
subsets 01, | 46).

Krogh and Vedelsby1[3(] have shown that the reduction in error due to an ensemble is
directly proportionate to the diversity or ambiguity in the predictions of the components of
the ensemble as measured by variance. It is difficult to show such a direct relationship for
classification tasks but it is clear that the uplift due to the ensemble depends on the diversity in
the ensemble members.

Colloquially, we can say that; if the ensemble members are more likely on average to be
right, and when they are wrong they are wrong at different points, then their decisions by ma-
jority voting are more likely to be right than that of individual members. But they must be more
likely on average to be right and when they are wrong they must be wrong in different ways.

3.7.1 Bagging

The simplest way to generate an ensemble of unstable classifiers such as Neural Nets or Deci-
sion Trees is to is to use Bootstrap Aggregation, more commonly known as Bagg]ng e

basic idea for a bagging ensemble is shown in Figue&, given a set of training daféd and a

query samplexg the key steps are as follows:

1. For an ensemble of members, generatetraining setsT; (i = 1,n) from T by bootstrap
sampling, i.e. sampling with replacement. Ofté&n = |T]|.

2. For eachr;; let Tv be the set of training examples not selected ifthis set can be used
as a validation set to control the overfitting of the ensemble member trained;yvith

3. Train n classifiersf;i(, T;) using theT; training sets. The validations séfis; can be used
to control overfitting.

4. Generaten predictions forxq using then classifiersf;(, Tj).
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Figure 3.29: An overview of a bagging ensemble

5. Aggregate thesa predictionsfi(xq, Ti) to get a single prediction foty using some ag-
gregation function.

The formula for this ensemble prediction would be:

The simplest approach to aggregate a regression ensemble is by averaging and the simplest
for a classification ensemble is by averaging om@ghtedaveraging:

fe(Xq, T) = _iWa x (fi(Xq, Ti) (3.51)

wheres ! ;w; = 1.

Provided there is diversity in the ensemble (and the bootstrap resampling should deliver
this), the predictions of the ensemidie(xq, T) will be more accurate that the predictions from
the ensemble membefgxg, Ti).

3.7.2 Boosting

Boosting is a more deliberate approach to ensemble building. Instead of building the component
classifiers all at once as in Bagging; in Boosting, the classifiers are built sequentially. The
principle can be explained with reference to Fig@r8Q This figure shows a true decision
surface and a decision surface that has been learned by the classifier. The errors due to the
discrepancy between the true decision surface and the learned one are highlighted. The idea with
boosting is to focus on these errors in building subsequent classifiers. In boosting, classifiers are
built sequentially with subsequent classifiers focusing on training examples that have not been
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learned well by earlier classifiers. This is achieved by adjusting the sampling distribution of the
training data. The details as outlined by Schapire] are as follows (wheréxy, yi), ..., (Xm, Ym)
with x; € X,y; € Y = {—1,41} is the available training data):

1. Initialise the sampling distributio®(i) = 1/m

2. Fort=1,...T:
(a) Train classifier using distributioD;.
(b) Hypothesis this classifier represent$yis X — {—1,+1}.
(c) Estimate error of this classifier 8= 3 j.n (x)-y; Dt(i).
(d) Letay = IntA,

(e) Update: |
Dy (i) { e ifhy(x) =y (3.52)

sl =777 L et it hix) 2y,

wherez; is a normalisation factor set to ensure tBat, will be a distribution.

(f) Continue training new classifiers whide< 0.5.

3. This ensemble of classifiers can be used to produce a classification as follows:
T
H(9 = signy cufh(). (3.53)
t=

Clearly, the role that classification error plays in this algorithm means that this formulation
only works for classification problems. However, extensions to the boosting idea for regression
problems exist; two representative examples are ADABoost.R2 by Druskpapd BEM by
Avnimelech and Intrator7].
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3.8

Strengths and Weaknesses

A summary of the strengths and weaknesses of these techniques from the point of view of
Muscle participants are as follows:

Multimedia data is inclined to be of very high dimension. In some circumstances, this
may exclude some techniques such as decision trees or neural networks that work best
with data of lower dimension. This may not always be the case however and we have
presented examples of both decision trees and neural nets in use on multimedia data.

Support Vector Machines work very well on high dimension data and afashénable

ML technique of the moment. A significant drawback of SVMs is the fact that they are
quite difficult to implement. However some good quality public-domain implementations
are available.

Nearest Neighbour classifiease easy to implement and should not be overlooked. The
advantages that derive from the transparendyNN classifiers should not be underesti-
mated.

It will often be the case that the accuracy of a classifier will be improved by aggregation
into an ensemble. With the processing power available today this can be quite a practical
course of action.
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Chapter 4

Unsupervised Learning

4.1 Unsupervised Clustering

Clustering (orcluster analysisaims to organize a collection of data items into clusters, such
that items within a cluster are more “similar” to each other than they are to items in the other
clusters. This notion of similarity can be expressed in very different ways, according to the
purpose of the study, to domain-specific assumptions and to prior knowledge of the problem.

Clustering is usually performed when no information is available concerning the member-
ship of data items to predefined classes. For this reason, clustering is traditionally seen as part of
unsupervised learning. We nevertheless speak harasafpervisealustering to distinguish it
from a more recent and less common approach that makes use of a small amount of supervision
to “guide” or “adjust” clustering (see sectianl).

To support the extensive use of clustering in computer vision, pattern recognition, informa-
tion retrieval, data mining, etc., very many different methods were developed in several com-
munities. Detailed surveys of this domain can be foundsii},[[77] or [6€]. In the following,
we attempt to briefly review a few core concepts of cluster analysis and describe categories of
clustering methods that are best represented in the literature. We also take this opportunity to
provide some pointers to more recent work on clustering.

4.1.1 A Typology of Methods

We start by mentioning some criteria that provide significant distinctions between clustering
methods and can help selecting appropriate candidate methods for one’s problem:

e Objective of clusteringMany methods aim at finding a singbartition of the collection
of items into clusters. However, obtainindngrarchyof clusters can provide more flexi-
bility and other methods rather focus on this. A partition of the data can be obtained from
a hierarchy by cutting the tree of clusters at some level.

e Nature of the data itemsMost clustering methods were developed for numerical data,
but some can deal with categorical data or with both numerical and categorical data.

¢ Nature of the available informationMany methods rely on rich representations of the
data (e.g. vectorial) that let one define prototypes, data distributions, multidimensional
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intervals, etc., beside computing (dis)similarities. Other methods only require the evalu-
ation of pairwise (dis)similarities between data items; while imposing less restrictions on
the data, these methods usually have a higher computational complexity.

e Nature of the clustersThe degree of membership of a data item to a cluster is either in
[0,1] if the clusters ardéuzzyor in {0, 1} if the clusters arerisp. For fuzzy clusters, data
items can belong to some degree to several clusters that don’t have hierarchical relations
with each other. This distinction between fuzzy and crisp can concern both the clustering
mechanisms and their results. Crisp clusters can always be obtained from fuzzy clusters.

e Clustering criterion Clusters can be seen either as distamipactsets or aslense
sets separated by low density regions. Unlike density, compactness usually has strong
implications on the shape of the clusters, so methods that focus on compactness should
be distinguished from methods that focus on the density.

Several taxonomies of clustering methods were suggestedin[[/ 7] or [6€]. But given
the high number and the strong diversity of the existing clustering methods, it is probably im-
possible to obtain a categorization that is both meaningful and complete. By focusing on some
of the discriminating criteria just mentioned we put forward the simplified taxonomy shown
below, inspired by the one suggestedf][

e Partitional clusteringaims to directly obtain a singleartition of the collection of items
into clusters. Many of these methods are based on the iterative optimization of a criterion
function reflecting the “agreement” between the data and the partition. Here are some
important categories of partitional clustering methods:

— Methods using the squared errogly on the possibility to represent each cluster by
a prototype and attempt to minimize a cost function that is the sum over all the data
items of the squared distance between the item and the prototype of the cluster it is
assigned to. In general, the prototypes are the cluster centroids, as in the popular
k-means algorithm107]. Several solutions were put forward for cases where a
centroid cannot be defined, such as the k-medoid methddwhere the prototype
of a cluster is an item that is “central” to the cluster, or the k-modes methdd [
that is an extension to categorical data.

By employing the squared error criterion with a Minkowski metric or a Mahalanobis
metric, one makes the implicit assumption that clusters have elliptic shape. The use
of multiple prototypes for each cluster or of more sophisticated distance measures
(with respect to one or several cluster models, see 244). ¢an remove this restric-

tion.

Fuzzy versions of methods based on the squared error were defined, beginning with
the Fuzzy C-Meansl[3]. When compared to their crisp counterparts, fuzzy methods
are more successful in avoiding local minima of the cost function and can model
situations where clusters actually overlap. To make the results of clustering less
sensitive to outliers (isolated data items) several fuzzy solutions were put forward,
based on robust statisticsg] or on the use of a “noise cluster2§], [94].
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Many early methods assumed that the number of clusters was known prior to clus-
tering; since this is rarely the case, techniques for finding an “appropriate” number
of clusters had to be devised. This is an important issue for partitional clustering in
general. For methods based on the squared error, the problem is partly solved by
adding aregularizationterm to the cost function. This is the case, for example, for
the competitive agglomeration method introduced4# [ where clusters compete

for membership of data items and the number of clusters is progressively reduced
until an optimum is reached. With such solutions, instead of the number of clusters
one has to control a regularization parameter, which is often more convenient. An-
other solution is to use a cluster validity index (see sectighto selecia posteriori

the appropriate number of clusters.

Density-based methodsnsider that clusters are dense sets of data items separated
by less dense regions; clusters may have arbitrary shape and data items can be ar-
bitrarily distributed. Many methods, such as DBSCAM][ (further improved in

[13(]), rely on the study of the density of items in the neighbourhood of each item.
Some interesting recent work on density-based clustering is using 1-class support
vector machinest.

One can consider within the category of density-based methodygithéasedso-

lutions, such as DenClué[] or CLIQUE [1], mostly developed for spatial data
mining. These methods quantize the space of the data items into a finite number of
cells and only retain for further processing the cells having a high density of items;
Isolated data items are thus ignored. Quantization steps and density thresholds are
common parameters for these methods.

Many of thegraph-theoreticclustering methods are also related to density-based
clustering. The data items are represented as nodes in a graph and the dissimilarity
between two items is the “length” of the edge between the corresponding nodes. In
several methods, a cluster is a subgraph that remains connected after the removal of
the longest edges of the graph’; for example, in [ 43 the minimal spanning tree

of the original graph is built and then the longest edges are deleted. However, some
other graph-theoretic methods rely on the extractiocligiuesand are then more
related to squared error methods. Based on graph-theoretic clustering, there has
been significant interest recentlyspectralclustering using kernel methods1[3.

Mixture-resolvingmethods assume that the data items in a cluster are drawn from
one of several distributions (usually Gaussian) and attempt to estimate the param-
eters of all these distributions. The introduction of the expectation maximization
(EM) algorithm in 28] was an important step in solving the parameter estimation
problem. Mixture-resolving methods have a high computational complexity and
make rather strong assumptions regarding the distribution of the data. The choice of
the number of clusters for these methods is thoroughly studied in more recent work
such as’] or [17]. In some cases a model for the noise is explicitely considered.

Most mixture-resolving methods view each cluster as a single simple distribution
and thus strongly constrain the shape of the clusters; this explains why we did not
include these methods in the category of density-based clustering.
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e Hierarchical clusteringaims to obtain a hierarchy of clusters, call@ehdrogram that
shows how the clusters are related to each other. These methods proceed either by itera-
tively merging small clusters into larger ones (agglomerative algorithms, by far the most
common) or by splitting large clusters (divisive algorithms). A partition of the data items
can be obtained by cutting the dendrogram at a desired level.

Agglomerative algorithms need criteria for merging small clusters into larger ones. Most
of the criteria concern the merging of pairs of clusters (thus producing binary trees) and
are variants of the classical single-linkiJ, complete-link B1] or minimum-variance
[139, [117]] criteria. The use of the single-link criterion can be related to density-based
methods but often produces upsetting effects: clusters that are “linked” by a “line” of
items cannot be separated or most items are individually merged to one (or a few) clus-
ter(s). The use of the complete-link or of the minimum-variance criterion relates more to
squared error methods.

Many recent hierarchical methods focus on the use of density-like information and don’t
constrain the shape of the clusters. They often reflect interest in the database community
for dealing with huge datasets and for speeding-up access. CUREMploys multiple
representatives per cluster in order to obtain clusters of arbitrary shape while avoiding the
problems of the single-link criterion. OPTICS][does not build an explicit clustering

of the collection of items, but rather an ordered representation of the data that reflects its
clustering structure.

4.2 Hierarchical Clustering

As outlined above, the basic idea with hierarchical clustering is to organise the objects to be
clustered into a tree structure or hierarchy called a dendographi(§eeThe process starts
out with each object in a cluster of its own and these clusters are connected, selecting the most
similar clusters to connect at each stage, until all clusters are linked. So the result is not a
set of clusters but a hierarchical structure with the distance between objects reflected by the
distance between them in the hierarchy. Another view on the hierarchy is that it describes
several alternative clusterings of different levelseverity In Fig. 4.1thecut cl describes the
clustering{{AB}{C}{D}{E}{FG}} which is morestrict than the clustering described bg,
{{ABC}{D}{EFG}}, in the sense that objects need to be more similar before being clustered
together.

The basic version of the hierarchical clustering algorithm as presented by Han and Kamber
[59 is as follows. Given a set dfl items or objects to be clustered, andNux N distance (or
similarity) matrix, the basic process of hierarchical clustering is this:

1. Start by assigning each item to its own cluster, so that if you haitems, you now have
N clusters, each containing just one item. Let the distances (similarities) between the
clusters equal the distances (similarities) between the items they contain.

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so
that now you have one less cluster.
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Figure 4.1: An example of 7 object that are organised into a hierarchical cluster, on the left a
set-based version of this hierarchy is shown while the dendograph is shown on the right.

3. Compute distances (similarities) between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster &f.size

The behaviour of this algorithm depends on the definition of the similarity between clusters.
We can think of this as thinkagebetween clusters and there are three basic ways in which this
can be measured.

e single-link clusteringWe consider the distance between one cluster and another cluster
to be equal to the shortest distance between any two objects from each cluster.

e complete-link clusteringin this case we consider the longest distance between objects in
the two clusters.

e average-link clustering In this case the average distance between objects in the two
clusters is considered.

The appropriate choice of link criterion depends on the nature of the data and clusters that
might exist. Single-link clustering will allow the developmentsifingy clusters, whereas the
other two criteria require more compact structures.

4.3 k-Means and Variants

k-means is gartitional approach to clustering’f]. Heuristics are used to refine the clustering

in order to find a good quality solution. The heuristic is to calculate the centroids of the clusters
at each iteration and reallocate samples to clusters with closer centroids. For &,gikien
k-means algorithm is implemented in 4 steps:

1. Partition objects int& non-empty subsets.

2. Compute the centroids of the clusters of the current partition. The centroid is the centre
(mean point) of the cluster.
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Figure 4.2: A simple example of k-means clustering in action

3. Assign each object to the cluster with the nearest centroid.
4. Go back to Step 2, stop when no reassignment occurs on a pass.

A simple example withn = 10 andk = 2 is shown in Figuret.2. The initial clustering
is shown in the top left-hand corner. The centroids of these clusters are shown in the second
frame; then two samples are reallocated to clusters with closer centroids in the next frame. The
centroids for these new clusters are shown in the fourth frame and the algorithm stops at this
point as all samples are associated with their closest centroid.

The main strengths d&means are that it is easy to implement and it is relatively efficient:
O(tkn) wheret is the total number of iterations. Typicalkyandt will be very small compared
to n.

It has a number of shortcomings:

e The basic version of the algorithm is applicable only when the mean is defined; this causes
problems with data with discrete features.

¢ In many domains the need to spediyn advance is a drawback. One solution to this is
to huntthrough a range ok values looking for a partitioning that scores well on some
validity metric (see section.?).
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e Itis poor at handling noisy data and outliers.
¢ Not suitable for discovering clusters with non-convex shapes.

e The solution found depends on the initial partitioning as different starting positions can
lead to different local maxima. This is often addressed by running the algorithm several
times and selecting the solution that scores well on some validity metric (see skcjion

Despite these weakness it remains a very popular algorithm.

The most popular variant on tHemeans idea i&-medoids, also known as Partitioning
Around Medoids (PAM)[€]. With k-medoids, the clustering is done around representative
objects in clusters (the medoids) rather than around cluster means. Each cluster is represented
by one of the objects located near the centre of the cluster. The algorithm begins by selecting
an object as medoid for each bkfclusters, then each of non-selected objects is grouped with
the medoid to which it is the most similar. The algorithm swaps the medoids with other non-
selected objects until all objects have been tried as medoids. Objects that work better as medoids
(i.e. reduce the cost function) are retained as medoids. This extra layer of checking (all potential
medoids Vv’s a single mean) means tkamedoids is an order of magnitude slower tlkameans.
k-medoids works effectively for small data sets, but does not scale well for large datagets [

4.4 Overview of prototype-based clustering techniques

Generally speaking, data clustering consists in finding natural groups, or clusters, of similar
patterns. Clustering techniques are classically divided into two broad categories: hierarchical
and partitional algorithmsop, 66], even so we can also distinguish for example (probabilis-

tic) model-based, grid-based or path-based clustering. We concentrate here on the partitional
methods and especially on prototype-based clustering methods. Among the latter, the K-means
algorithm is perhaps the most widely used for the sake of simplicity and efficiency.

Originally devised in $9] as anon-line clustering technique, most people refer to K-means
as abatchalgorithm. It provides a “hard” partition of the data as opposed to its “fuzzy” coun-
terpart called fuzzy C-means1]. The common purpose of these center-based clustering algo-
rithms is to summarize multivariate data by a reduced set of central points. It is very close to
vector quantization design which consists in encoding a signal source with codebook reference
vectors. The best known technique in this domain, the LBG algorithify €an be interpreted
as an adaptation of K-means for data compression. On the other hand, on-line versions are
connected to the neural networks literature and the so-called competitive learning algorithms.
We should note eventually that data mining applications have required specific clustering algo-
rithms able to deal with large datasets and high-dimensional feature spéce [

K-means clustering consists in findikgclusters such that a global distortion error is min-
imized. LetX = {Xn}n=1,.. N be a set of feature vectors and assume that each data instance
containgd real-valued attributes:

FFFF 1111 XXXXX The standard objective function is actually a sum of variances within
each group. It involves thi€ centers of each cluster (often called prototypes) and the criterion
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amounts to the minimization of the sum of distances to the nearest prototypes:

K
EOR) = Y 3 D) (4.)
I=1xneG
N
- n:lle{T.l.TK}@(Xn’yl) “2)

wheredk = (y1,...,Yk) is the unknowrK-tuple of prototypes an{(y, . .., Ck ) the correspond-

ing clusters which constitute a partition of the dataset. Conventional K-means algorithm uses
the square Euclidean distanc@(x,y) = ||x —y||? = T ,(x — yi)?, but other center-based
clustering algorithms can be derived by using different measures of distortion or by assigning a
weight to each data point.

Even in the standard case, minimizing the objective function requires an iterative procedure
and getting the global minimum is not guaranteed. Optimization starts with some given proto-
types, and alternates data allocation to the nearest prototype and update of the prototypes (as
means of the sample vectors assigned to the corresponding cluster). As the EM algorithm for
Gaussian mixture model estimation, such techniques only converge to one of numerous local
minima and are known to be sensitive to outliers. Moreover, the nuileérclusters must be
knowna priori.

Actually, the recent works on the subject have tried to overcome the major drawbacks of
conventional K-means, namely influence of noise and outliers, choice of the number of clusters
and sensitivity to initialization. To improve the initialization step, the basic idea is to replace
random sample with refined starting points selected by a rough estimation of the modes in the
data distribution. One alternative is to perform a stochastic optimization method like simulated
annealing in order to avoid local minima of the given cost function.

We now briefly review partitional approaches to bavhustclustering in the presence of
noisy data andinsupervisealustering when the optimal number of clust&rgs unknown.

The general technique to handling the problem of K-means sensitivity to outliers is to mod-
ify the objective function by considering an additional noise cluster or by incorporating con-
cepts from robust statistics. The K-medoids algorithm is one of the earliest solutiprb{it
most algorithms have been derived in the framework of fuzzy clustering so that it can deal with
overlapping cluster boundaries3. Note also that the notion of robust vector quantization de-
veloped in the context of data encoding and transmission does not refer to outliers but to channel
noise and to random elimination of prototypes for codebook reduciidin [

The traditional method to determinirgis to select the K-means partition that optimizes a
certain validity measure over a range of differ&ntalues [L.”7]. Nevertheless, the computational
cost is quite high and the choice of appropriate validity indices evaluating the quality of the
partition still remains a difficult questiorb{]. One alternative is to perform some progressive
clustering by starting with an over-specified number of clusters and then adding a second phase
of splitting and merging like in the popular ISODATA algorithr] [“Stepwise” clustering and
“dynamic” local search have also been suggestedl put all these solutions need to specify
similarity criteria and to set thresholds. A non-parametric scale-space model order selection
was presented in p5. In the same way, recent methods try to make no additional assumption
about the structure of the data distributiGi¥].
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Very few techniques attempt to globally solve the unsupervised robust clustering problem.
In [46], the authors propose a fuzzy clustering algorithm involving a robust “competitive ag-
glomeration” process previously introduced #3]. A regularized objective function is put
forward with the use of fuzzy memberships and a robust loss function, while a separate virtual
noise cluster is introduced irv§] to catch the outliers. Even so the number of clusters can
be derived in that way, such a regularization approach requires in practice several heuristics
to tune the parameters of the considered criterion.1Lht]} a novel extension of the standard
K-means algorithm is suggested for learning the structure of each class of semantic events in
video content analysis. It is based on the use of a robust distance involving a single scale pa-
rameter. The algorithm starts with a single cluster and progressively creates new clusters from
the data considered as outliers with respect to the existing clusters. The number of prototypes
K is determined by choosing the optimal value of the scale parameter for which the partition is
the most stable.

4.5 Unsupervised Bayesian Learning in Image Segmentation

45.1 Introduction

Bayesian inference provides a well-founded mathematical framework in which to develop machine-
learning methods. Recall that the premise of the Bayesian approach is that there are quantities
of interestd that we wish to learn about, and that we have detsailable to us. In the multi-
media settingx is our image, audio or video signal, afds the output of our method, be it for
example a restored image, the location and/or time of events in a video sequence, or transcribed
speech.

The Bayesian paradigm says that what we have learnt &bioutight of x is described by
the probability distributionp(8|x), known as the posterior distribution. By Bayes’ law, this
distribution can be computed as

p(B[x) O p(x|6) p(6),

where the constant of proportionality in this relationship ensureguilax) sums or integrates
to 1. On the left hand side, we have two distributions that we must specify:

e the distributionp(x|8), known as the likelihood. This shows how the data arose from a
particular value oB. It is the model for our data.

e the distributionp(8) is the prior distribution. This specifies what we know ab@ytrior
to observingx.

There are many general texts on Bayesian learning. The foundations of the approach are de-
scribed in P6]. In the statistical literature 9] is a good introduction. A more comprehensive
textis [£9]. A good reference for the computational approaches to computing posterior distri-
butions is [.34.
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4.5.2 The Prior Distribution in Multimedia Learning

Whereas the data modg(x| 0) is specified in all probabilistic learning methods, the prior distri-
bution is a quantity unique to the Bayesian approach. It has both advantages and disadvantages.
The main advantage is that it is a natural way to specify “structural” information about the
guantities of interest. For example in image restoration one may specify a prior distribution that
puts more weight on images that look like natural scenes. In object recognition we can specify
whether occlusion can or cannot occur, and place zero probability on impossible locations of
objects in a scene. The disadvantages are usually computational — Bayesian learning is not
fast to compute — and a lack of objectivity, in the sense that different users may apply different
priors to get different results. There is also a difficulty in specifying complete ignorance about
a quantity, which is sometimes required in other statistical applications, although usually in
multimedia data we are not in complete ignorance aBout

4.5.3 Application: Unsupervised Segmentation of Satellite Images

In this example we use a prior that specifies structural information on the segmentation of an
image, and use it to construct an unsupervised segmentation algorithm. The prior is on the
field of labels that specify, for each pixel, to which segmentation class it belongs. A structural
property of segmentations is that classes are clustered in space, as they represent continuous
objects or activities. The Markov random field/[] is a natural way to specify a distribution
on the labels that allows this clustering; they also specify a model for the appearance of each
class, leading to the term double Markov random field. It has been extensively used in Bayesian
approaches to image segmentation, S€€][for instance. Markov random fields have many ap-
plications to segmentation, se&)[ 121] for example. This example also shows the considerable
computational difficulties that can be encountered with the Bayesian approach, in particular in
determining the number of classes in the segmentation proves to be computationally demanding.

Consider a rectangular lattice of pixel sit@sAn image consists of an array of grey values
(Xs)ses and labelqys)sc s, identifying the texture type present. Let therePé&xtures in the
image and each texture, defined on all%fis a Markov random field", parameterised by
B;, with neighbourhood system having set of cliqugs The label process is another Markov
random fieldY, parameterised b@ and with neighbourhood system having set of cligges
All the fields are independent conditional on model parameters.

We define theP(T"|6;) to be Gaussian Markov random fields (GMRFs), so that for a
GMRF havingK clique types in its neighbourhood systef, = (W,02,61,...,6k), and
P(Y = y|R,B) to be a Potts model, 6 > 0, which places more weight on labellings where
neighbouring pixels are in the same class.

Thedouble Markov random field a probability distribution oveX andY of the form

P(X:X,Y:y|R,61,...,8R,B)

R
— P(Y =y|R,B) [LP(TSZ =x5(6r), (4.3)

where§ = {s€ S|ys=r} andT¢, xs denoteT" andx restricted td&, and the distributions of
T" andY are Gaussian and that of the Potts model respectively.
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In what follows we assume that the classes are ordered by their mean va|ye<i.g;. 1.
The ordering removes the non-identifiability of a segmentation, in the sense that, without the
ordering, the method cannot distinguish between segmentations where the class labels are per-
muted. The non-identifiability would complicate the method that we propose for determining
R.

4.5.3.1 Using the Model for Segmentation

In a Bayesian approach to unsupervised segmentation, the goal is to calculate the distribution
of Y, Rand the model parameters if unknown, givérthat is:

P(Y,R,01,...,6r,B|X) O P(X,Y|R,04,...,0r,B)P(R 61,...,0r,B), (4.4)

whereP(R 641,...,06g,B) is a prior distribution on the parameters. The parameters are usually
assumed independeatpriori. In the GMRF case, these are assumed to be: uniform prior
distribution forp, over the rang€0, 255, inverse gamma prior fap? with parameters andb,
uniform prior for (61, ...,6yk ) over the allowable range of values (sé€é][for this range in the
case of a second order neighbourhood system) and geometric pfowitn parametep. The
only available technigue to evaluate this posterior distribution is Monte Carlo Markov chain
(MCMC) simulation, usually the Gibbs sampler, where one simulates from the full conditional
distributions of eaclys, s€ §, and those off and6,, r =1,...,R. To simulate fromR, other
methods are needed, as described below.

For the double Markov random field, the full conditional distribution for the pixel labels is
not easy to evaluate. We use an approximation to it;Lirt] it was shown that the pseudo-
likelihood performed well,

P(X,Y|R.B.61,....8%) ~ P(Y|RB) [P(Xs| Oy, Xt € o), (4.5)

ses

wherens is the neighbourhood of For eachs, it is assumed that the textuyg holds in the
entire neighbourhood &f This approximation is developed in(]. In the case of the Potts-
Gaussian model, the full conditional 4f is:

P(yS: r|X7yj7j #S,er,B) 0

exp|—

K 2
{Xs—Ur_Zkzl Yil<si>k erk(xi_ur)}
207

X exp[B z I (r :yj)] , (4.6)

jens

\/ 2102

where< s, j >k means that pixelsandj form a clique of type (horizontal, vertical neighbours,
etc.),nsis the neighbourhood afin the Potts model an) is the indicator function.

The Gibbs sampler repeatedly samples from each full conditional in turn, forming a Markov
chain whose stationary distribution is the posterior distribution. As a solution, we take the MAP
or most likely posterior segmentation. This is found by running Gibbs sampling in tandem with
simulated annealing to find the maximum.
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4.5.3.2 The Reversible Jump Approach to Sampling fronR

Reversible jump has been used for identifyilRgn image segmentation by Markov random

fields [6, 76]. Reversible jump was proposed a7, which we refer to for a full description

of the approach. The idea is to samplédy a Metropolis move. This requires an acceptance
probability, and in this application the only moves that are both practical and easy to propose
with a non-zero acceptance probability are to increase or deckRehgdl.. Increasingr by 1

requires that we generate parameter values for a new class, and a new segmentation that involves
the new class. The new parameter values must be generated according to a 1-1 transformation
between the new set of values and the old parameters together with random numbers necessary
to generate the parameters for the new class. So a move@pm (61,...,6r) t0 O, ; =
(81,...,0R,0R,1) is achieved with a set random numbersf the same dimension &, ,

such that there is a 1-1 functiqi®r,u) < ©% ;. The usual conditions of reversibility and
irreducibility must be maintained. DecreasiRgby 1 requires that we eliminate one of the
classes, and propose a segmentation where the deleted class is not present. The reversibility
means that this move must be done using the same 1-1 function be®ygerand (Or,u).

Once either move has been done, an acceptance probability can be computed. For the move to
increaseRto R+ 1, with a change in parameters fr@g to ©f_ ,, and a change in segmentation
fromY to Y*, this acceptance probability is the minimum of 1 and

P(X,Y*|R+1,05,1,B) P(O),1) P(R+1) 1 P(decreas®+1) |d(ORg,u)
P(X,Y|R,OR,B) P(Gr) P(R) P(u) P(increaser) 004, 1

where the final partial derivative is the Jacobian of the transforma@gpu) — O, 1, and
P(decreas®+ 1) andP(increaser) refer to any other probabilities involved in decreasing or
increasing the number of classes (for example, randomly choosing which class to delete).

The above is a strategy for sampling f&r Sampling from the other parameter values and
Y is from the full conditionals, as described in Sectibh.3.1 Repeated sampling like this in
tandem with simulated annealing produces our solution.

) (4.7)

4.5.3.3 Split and Merge Moves

IncreasingR by 1 is done by choosing an existing class and splitting it into two. Several split
moves for increasing® have been considered. Finally we propose the following, which is a
compromise between computational complexity and arriving at a proposed new segmentation
that has a reasonable acceptance probability. To increase the number of classesfRoml,

we propose to:

1. Randomly pick a non-empty clasgo split.

2. Generate new parameteds; and6;, from 6. and random numbens by a 1-1 trans-

formation such that dinfic,u) = dim(87;,067,). For GMRF texture models, we use the

following, designed to be simple perturbations of the current parameters:

Hep = e — U10¢ Hez = e+ U10¢
02 = 02(1+w) 0:3 = 0%(1—up) (4.8)
Bc1k = Ook+ Uzk Oc2k = Ock — U2k,
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where theu; is uniform(0,1),uy is uniform(-1,1), us,k is uniform(-0.1,0.1) ank =
1,...,K. The Jacobian of the transformation in Equatio@is 4032X.

3. Check to see that the new means are still ordered (thpg is,< 5 < Mg < Her1) and
lie in the prior rang€0, 255. If not, reject move immediately. If so, continue.

4. Assign all labels currently assigned to clast® classes1 or c2. This is done as fol-
lows. Labels in the sef; are assigned randomly to eithek or c2. Then several Gibbs
sampling sweeps are taken owgronly, using classesl andc2 and the full conditionals
of Equation4.6. The Gibbs sampling hopefully produces homogeneous regiasisah
each new class.

5. Compute the acceptance probability (see below) and accept or reject the move. If accept,
relabel parameters and classes to incleandc2.

The choices for the at step 2 are a balance between allowing the possibility of reasonably large
changes in the properties of old and new classes, and restricting changes so that the chance of
accepting the move is not always O.

ReducingRis done by choosing two existing classes and merging them into one. The merge
move is to choose a clas$, select the clas? that has closest mean to it (from the ordering on
means property, this is eithet + 1 orcl— 1) and propose new parameters for the merged class
cthat are the inverse of the transformation in Equatidi We use the following transformation
of parameters for the reversal of the split transformation:

He = b He1 + 2 He2;
ny+ny n+ny
2 % 0 6 (4.9)
2 0100, o Bakt Bk
O-C - 2 ’ CK_T7

wheren; andny are the number of pixels assignedcibandc2 respectively.
The accept probability is rather complicated and is omitted here; we refer yau @pfpr
its form, which is also accessible via the INRIA website

4.5.3.4 Experiments

Figure4.3 shows an aerial image, with the MAP solution from the reversible jump algorithm.

The algorithm finally converged to 10 classes. This is an oversegmentation, in the sense of
discriminating the main classes in the image: different fields, trees and the road. It has also
segmented each field into different classes that correspond to different colourations in the image.

Figure4.4is an analysis of a satellite image of an area of Holland. In this case we end
up with 24 classes. This represents another oversegmentation; for example, the reversible jump
method of [ 6] finds 10 classes. The image consists of fields, which the algorithm classifies into
different classes according to mean intensity, and urban areas, which the algorithm segments
according to mean intensity, ignoring the similar texture over all the urban areas. We also find
that 90% of pixels are assigned to only 4 classes. In spite of this, the algorithm did not merge
the classes assigned to only a small number of pixels. We referitbfor more details.
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Figure 4.3: An aerial image on the left, with MAP segmentation, using splitting and merging
of non-empty classes.

45.3.5 Conclusions

In this example we have developed a Bayesian segmentation algorithm based on a Markov ran-
dom field prior for the labelling, implemented with MCMC. The split/merge moves proposed
here seem to oversegment the images, with many classes being assigned to small proportions
of the image and not merged. Possibilities for reducing the number of classes are: larger neigh-
bourhood orders for the labels, fixirf§yto be reasonably large, running an MPM (marginal
posterior mode) sampler or some form of post-processing. Other MCMC approaches that infer
the number of classes may also provide ideas, particularly those using stochastic geometry (see
[64] for work in Projet Ariana). These will be topics for future work.

4.6 Self-Organizing Maps: Principles and Algorithms

In many applications (data mining, pattern recognition, etc.), the dimensionality of input pat-
terns is very large and it is thus extremely difficult for an analyst to extract the relevant features
or to detect some useful structures in the data. When agméeri knowledge is available re-
garding the distribution of input data, unsupervised clustering is then an efficient tool to help the
analyst to make a decision. Roughly speaking, the clustering allows to group a given collection
of unlabeled patterns into meaningful clustefS][ The obtained clusters are data driven in the
sense that they are obtained solely from the input data. The main problems consists in defining
the cluster boundaries as well as a meaningful representative pattern for each class. Many meth-
ods have been proposed for clustering data 0] and generally, each class is represented by
the centroid of the associated cluster. A particular class of clustering methods peatiddnal
methods, produce clusters by optimizing a criterion function defined either locally (on a subset
of patterns) or globally (defined over all of the patterns). This kind of approach is closely related
to vector quantization![9, 50]. Indeed, the design of a vector quantizer need a representation of
the input data with a limited number of reproduction vectors (caitetewordyand the defini-
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Figure 4.4: Image of an agricultural area (top), with MAP segmentation (bottom).

tion of a rule for mapping input vectors into the codewords. As mentione@dljndgn important

special class of vector quantizers that is of particular interest, cdblexhoior nearest neighbor

vector quantizers, has the feature that the partition is completely determined by the codebook
(i.e. the set of the codewords) and a distortion measure. In fact, for a given codebook, such an
encoder is optimal in the sense of minimizing average distortion and, without loss of generality,
the term vector quantizer is commonly assumed to be synonymous with nearest neighbor vector
guantizer. One of the most popular vector quantizer iSGbaeralized Lloyd Algorithimalso

known as thé&k-meansalgorithm. This algorithm uses the nearest neighbor mapping rule and is
thus optimal as underlined before. It is also largely used for clustering data in an unsupervised
way when naa priori information is available regarding the probability density function of the
data to be classified.

SOFM (Self Organizing Feature Mgpalso known as the Kohonen algorith&6[ 87], is a vari-

ant of the k-means algorithm in the sense that it also uses the nearest neighbor mapping rule
but it also presents the great advantage to preserve the topology of input data. For this purpose,
SOFM is built upon a latticé of neural units (also called cells) with a given dimensionality and
topology (generally rectangular or hexagonal). EachicelA is connected to a set of neighbor-

ing cellsA((i) and the Kohonen algorithm defines a mappiffrom the input spac&l ¢ R

into A such that two similar input vectors M are mapped onto neighboring neural units (see
Figure4.5).

To perform such mapping, SOFM is based on competitive learitlggr which any input
vector activates only one cell. This kind of learning is based on an adaptative process in which
the cells of the network are progressively tuned to specific features of the input data set. In
order to take place, each neural unit A is associated to a reference veatg(t) € RY where
t indicates the time index. These reference vectors are progressively adapted to input features
during an unsupervised learning process. As a result, a partitionning of the input space is built
since the spatial location of a given ce# A corresponds to a particular dom&nc M called
thereceptive fieldfi.
Usually, the dimension oA is lower than the dimension d¥ explaining why the Kohonen
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Figure 4.5: General principle of Kohonen networks

algorithm is often presented as an efficient tool to perform dimension reduction.

It is also worth noting that this kind of neural network is closely related to the human brain for
which perceptually similar stimuli activates nearby neural zones.

This document is organized as follows: sectibfi.1details the basic Kohonen algorithm and
explains, from examples, how the lattice adapts its topology to reflect the underlying distribution
of input data. Sectiod.6.2presents the supervised versions of the SOM learning rule called
LVQ (Learning Vector Quantizatigrgenerally used to perform pattern classification. Section
4.6.3details some quantitative measures that can be used to check the quality of the mapping.
Section4.6.4presents some dynamic lattice structures that enhance the representation of input
data. In particular, we will discuss about hierarchical structures that greatly improve the adap-
tation of the map topology with regard to the distribution of input data. Finally, sedti®®
concludes this document.

4.6.1 Basic Self-Organizing Map Algorithm
4.6.1.1 Neural Network Model

The Kohonen model is based on the construction of a neuron layer in which the neural units are
arranged in a latticA. Usually, the lattice is two-dimensional and the most popular lattices are
rectangular or hexagonal (see Figdré(a,b)).
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Figure 4.6: Rectangular (a) and hexagonal (b) two-dimensional lattices

The neural layer is innervated layinput fibers (i.e. as many fibers as the dimension of the
input spaceM) calledaxonswhich carry the input signals and excite or inhibit the neurons via
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synaptic connections (see Figurg).
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Figure 4.7: Neural network model

As underlined in the previous section, the Kohonen network aims at preserving the topology
of the input space and at tuning each cell to a particular set of stimuli. To reach these goals,
the excitation of neurons has to be restricted to a spatially localized regfand the location
of this region has to be determined by those neurons that respond most intensively to a given
stimulus. MoreoverA acts as a topographic feature map if the location of the most strongly ex-
cited neurons is correlated in a regular and continuous fashion with a restricted number of signal
features of interestl[2?d. Neighboring locations irA correspond thus to stimuli with similar
features. To satisfy these properties, a neighboring function between cells must be added in the
network model. For this purpose, each del A is connected to a set(a(i) of neighboring
cells, defining thus a topological ordering of cells.

The goal of the Kohonen learning algorithm is then to adapt the "shap&tmthe distribution

of the input vectors oM c RY.

In the following and without loss of generality, we assume that the Kohonen network is com-
posed ofh neural units arranged in a two-dimensional latéce

4.6.1.2 Competitive Learning
Let:

e X ={x(t), t=1,2,...} be a set of observable samples with) € M c RY, t being the
time index;

e M={m(t), i=21,2,....nand t=1,2,...} be a set of reference vectors with(t) €
RY Vi, t.

We suppose thaty(0) has been initialized in a proper way for all valued.oGenerally, a
random initialization would suffice.
If X(t) can be compared simultaneously tora(t) by using a distance measuéx(t), m(t))
in the input space, then the best candidaté) is defined by:

me(t) = arg miind(x(t),m(t)) i=1,2,...,n.
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By associating each reference veatg(t) to a neural unit € A, the cellc attached tang(t)
is called the BMU Best Matching Unit
The idea behind the competitive learning paradigm consists in updagitgin order to match
even closelyx(t). By this way, the distance betweea(t) andm(t) is decreased whereas the
other reference vectors remain unchanged. This approach tends to tune each cell to a specific
domain of the input spadd.
Ideally, the updating rule should modify the reference vectors in such a way that they approxi-
mate the continuous density functip(x) of the input vectors belonging %. By analogy with
vector quantization, the quality of the placement of reference vectors can be measured by using
the N power of the reconstruction erré&:

E = [ Ix—md| P

wherem is the reference vector associated to the BMU correspondirg to

Ix—mg]| = min {|x—m]}.

It can be shown that far= 2, minimizingE; conducts to the following stepwize delta rule
used to update the reference vectors:

Me(t+ 1) = me(t) + a(t)[x(t) — me(t)]
{ m(t+1) =m(t)Vi#£c (4.10)

wherea (t) designates thkearning ratei.e. a monotonically decreasing sequence of scalar
values with O< a(t) < 1.
As mentioned previously, this updating rule decreases the distance betygemd mg(t),
while the others remain unchanged (see Figu8g

Figure 4.8: lllustration of the competitive delta rule

The rule ¢.10 defines the basic rule of competitive learning and it is important to note that
it allows to obtain the optimal placement of reference vectors with regard to the mean square
reconstruction error. However, by using this simple rule, each cell acts independently and the
order in which they are assigned to the different domainX sfrongly depends on the initial
values ofm;(0) [8€]. To reflect the topological ordering observed in the human visual cortex,
this delta rule must be modified by incorporating a topological function.
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4.6.1.3 Topological Ordering

A learning scheme that preserves the topology of input data is such that two vectors that are
close to each others in the input space are mapped on nearby cells in the output space. By this
way, the network is able to adapt its topology to the "shape” of the input data density function.
To reach this goal, the lateral interactions between cells are reinforced by integrating the neigh-
borhoodA(i) of each celii in the delta rule. By this way, at each learning step, the reference
vectors associated to the cells that lie within the neighbortigga) of the BMU c are updated

while the others remain unchanged.

In practice, the width of the neighborhood varies with time leading to a neighborhood function
Aa(c,t): in the first learning steps, the width is chosen large allowing to quickly obtain a global
ordering and then, the width decreases monotonically to obtain a fine tuning of the reference
vectors to input features (see Figuré).
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Figure 4.9: Variation of the neighborhood width with time

This new delta rule is expressed as follows:

{ me(t+1) = me(t) +a(t)[x(t) —me(t)] if i € Na(c,t)

mt+1)=m(t)vizc otherwise (4.11)

In practice, a kernel-based alternative to the delta ril&lf is used. This new updating
scheme aims at performing a stronger weight adaptation at the BMU location than in its neigh-
borhood. This kernel-based rule is defined by:

M(t+1) = m(t) + a(t)he(t) x(t) — m(t) (4.12)

wherehc;(t) designates the neighborhood function that governs the strength of weight adap-
tation as well as the number of reference vectors to be updated. Typically, this neighborhood
function is a unimodal function which is symmetric around the location of the BMU and monot-
ically decreasing with increasing distance from the BMU. Classically, a Gaussian is used, lead-
ing to:

Ire —ril|®
hei(t) = eXK—W) (4.13)
wherer; denotes the 2D location vector of the celh the two-dimensional lattice A. The
time dependent parametéft) governs the width of the neighborhood function as underlined

previously.
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Intuitively, we can see by analyzing.(L2) that all cells lying in a close neighborhood of the
BMU will be progressively tuned to similar features in the input space. Many methods have
been proposed in the litterature to measure the degree of topology preservation as we will see
later but it is very difficult to prove this assertion in the general case. Nevertheless, some
attempts have been published for special cases and we invite the reader to réfer4@R,

, 139 for a deeper study on this subject.

4.6.1.4 Kohonen Basic Algorithm

In this section, we propose to show how to use the different notions introduced up to this point
in order to obtain a complete algorithm performing competitive learning that preserves topol-
ogy. A classical Kohonen algorithm is composed of four main steps: estimation of the lattice
structure (i.e. number of neural units, dimension and topology), the initialization of the learn-
ing parameters (learning rate, neighborhood function, number of iterations), the selection of the
BMU and the reference vectors updating.

Step 1: Estimation of the Lattice Structure Ideally, the lattice structure should be governed

by a tradeoff betweeresolution quantization errorandtopology preservation

The two first notions are highly correlated: the resolution can be roughly defined as the mean
volume of cell’s receptive fields i.e. the volume of the domain associated to each cell in the input
space. The quantization errqeis a useful measure that can be used to assess the resolution
level:

1P
ge=— > [[Mme—xll (4.14)
P

where p denotes the number of input vectors angldesignates the reference vectors at-
tached to the BMU associated xp. A high value ofge denotes a bad representation of input
data by the set of reference vectors. Moreover, a gt the end of the learning step indicates
generally an insufficient number of cells. In the basic version of the Kohonen algorithm, the
number of cells as well as the size of each dimension of the network have to be predetermined
and one often need to run several simulations to pick the optimal size. We will see later in this
document (cf. section.6.4 how to iteratively adapt the size of the network to the distribution
of input data.
An other important property to be satisfied by the network is the preservation of topology. How-
ever, the degree of preservation also depends on the lattice structure and in the form of the data
manifoldM. In fact, if a dimensional conflict occurs between the input and output spaces, the
topology preservation property is lost. Ingd], the authors introduce the notiontaipographic
functionas a measure estimating the dimensional conflict.
In conclusion, defining an optimal lattice structure (i.e. a structure enabling an efficient repre-
sentation of input vectors) is a tedious task that is generally performed in an empirical way. In
fact, lattices of dimension two with an isotropic topology (rectangular or hexagonal) are gener-
ally used for two main reasons: the visualization of input data structure is facilitated by using
2D lattices and the access to the neighborhood of a cell is easy for isotropic structures. Many
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adaptive methods have been proposed in the literature to obtain a 2D lattice structure enabling
an efficient data representation [} 7, 12(].

Step 2: Initialization of the Learning Parameters The Kohonen Algorithm is controlled by

four parameters: the learning ratét), the neighborhood functioln;(t), the number of learn-

ing iterationgmaxand the initial reference vector valueg0) Vi =1,2,...,n.

As underlined in §6], the convergence of the algorithm is ensured by imposi(ig to be

a monotically decreasing function dfout an accurate decreasing rule has no impact on the
learning results. Consequently, the decreasing form can be linear, exponential of inversely pro-
portional tot and we will discuss later about some useful rules that can be used to efficiently
tuned this parameter during learning.

Regarding the neighborhood function, the classical used shape is the Gaussian one as defined
in (4.13.

The stopping criterion of the learning steps can be expressed in two ways: either a maximum
numbertax Of iterations is defined before learning or the learning is performed until the quan-
tization error is below a predefined threshold. This latter choice assumes a atpnyi
knowledge about the distribution of input data and in practice, such a knowledge is not avail-
able. Therefore, we assume in the following that the learning is iterated dugpsteps. To

define this numbeti,ax a "rule of thumb” B6] imposes that, for good statistical accuracy, the
number of steps is at least 500 times the number of network cells.

Finally, without anya priori knowledge about input data distribution, the reference vectors are
initialized with random values.

Step 3: Selection of the BMU As underlined in sectiod.6.1.2 when presenting an input
vectorx(t), the BMU is the cellc whose reference vecton(t) is the closest one t&(t) in

the sense of a distanc¥x(t),m:(t)) computed in the input space. Two distances are used in
practice: the Euclidian norm and the dot product. In the former case, the BMU is the cell whose
reference vector has the smallest Euclidian distance from the input vector whereas in the latter
case, the largest dot product designates the BMU.

For vectors of unit lengths, both methods are equivalent i.e. if the input vectors and reference
vectors are of unit length, the same weight vector will be chosen as closest to the input vector,
regardless of whether the Euclidian distance or the dot product is used. In practice, for con-
sistency and to avoid the normalization step, the Euclidian distance is retained to choose the
BMU.

Updating the Reference Vectors Once the BMU is chosen according to the previous step,
the reference vector associated to the BMU as well as the ones associated to the cells lying in
hi(t) have to be updated according to the delta rule defined.ir®).

4.6.1.5 Some Useful Rules

The rules presented in this section are extracted freinc] and are intended to reach good
learning results in terms of accurate input data representation.
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e Rule 1: number of iterations
Competitive learning can be interpreted as a stochastic process and thus, the final statis-
tical accuracy of the mapping depends on the number of learning steps. As underlined
before, a simple rule consists in performing a number of steps equivalent to 500 times the
number of cells.

e Rule 2: number of training samples
Generally, less input samples than the required number of steps are available. Conse-
guently, each available input vector has to be used several times during training. Several
alternatives exist: the available samples may be applied cyclically or in a randomly per-
muted order, or picked up at random from the basic set. However, experiments have
shown that an ordered cyclic choice is often sufficient.

¢ Rule 3: fine tuning of the learning rate
As mentioned before, the learning ratét) has to form a monotically decreasing se-
guence with regard tb However, the decreasing duration has no need to coincide with
the total learning duration. In fact, the first learning steps aim at obtaining a global order-
ing of the map while the objectives of the remaining steps are to reach a fine tuning of the
reference vectors allowing to get an efficient representation of input data.
A rule for tuning this parameter has been proposedii: [for approximately the first
1000 stepsq(t) should start with a value close to 1.0, thereafter decreasing monotoni-
cally. After this global ordering period(t) should attain small values (e.g. of the order
of or less than 0.01) over a long period. Neither it is crucial whether the law (figr
decreases linearly or exponentially during this final phase.

e Rule 4: width of the neighborhood function

Special caution is required regarding the choice of the neighborhood width. If the neigh-
borhood is to small during the first learning steps, the map is not able to reach a global
topological ordering. To overcome this drawback, the rule generally agreed consists in
choosing an initial neighborhood width of about half of the network width. This width
can then decrease linearly with time to one unit. Finally, during the fine adjustment of the
map, the neighborhood function can only cover the nearest neighbors of each cell in the
lattice A.

4.6.1.6 Some Variants of the Basic SOM Algorithm

As we saw up to this point, the two main goals of SOM are vector quantization and topology
preservation. However, these goals are in conflict when the dimension of the input space is
larger than that of the lattice and in this case, the basic SOM algorithm tends to privilege the
vector quantization goal at the cost of a poorer topology preservation. As mentioned earlier, the
guantization quality can be measured by the quantization ge¢sf. (4.14) and many mea-

sures have been proposed to assess the preservation of topglogyds, 110, 138. However,
improving the quantization quality (by decreasig) often lead to decreasing the preservation

of the topology. To find a good tradeoff between these two concepts, several variants have been
proposed in the literature. In most cases, these variants modify the basic Kohonen algorithm by
defining a new rule for choosing the BMU and/or a new rule for updating reference vectors.
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In [87], the authors present three different strategies for choosing the BMU. These strategies
are governed by two measures, nangghand a topographic errdark that increases when two

non adjacent cells are associated to nearby reference vectors in the input space. The first strat-
egy consists in weightinge and T E during the learning phase in order to choose the BMU.
Consequently, the BMU is the cell whose reference vector is close to the input vector and such
that the reference vector is somewhat close to the reference vectors associated to neighboring
cells. In the second stratedyE is improved by choosing the BMU by averaging a number of
reference vectors that best match the input vector. Finally, the third strategy finds the minimal
convex set (the simplex) in the input space wath 1 vertices adjacent in the lattidewhered

denotes the dimension é&f This last algorithm discourages the creation of knots by prevent-

ing the BMU from crossing the simplex bounded by other map nodes: it thereby lowers the
TE. Regarding the experimental results, the first strategy produces interesting results but with a
very high computational complexity, making it not usable. The second approach need a limited
number of cells to be averaged but its efficiency is perceived late in the learning phase. Finally,
the third strategy gives interesting results soon in the learning step.

In [83], the author presents a variant of the basic SOM algorithm cAGIOM This variant is
motivated by the following observations:

¢ if the natural dimension of the input space is larger than the dimension of the lattice, the
map tries to approximate the higher dimension by folding itself in the input space;

¢ the degree of folding depends on the stiffness of the map that is governed by the width of
the neighborhood function;

e excessive folding, that results in topographic error, manifests itself so that the BMU and
the second BMU are no longer adjacent in the lattice.

The author proposes a solution for which the map preserves the topology while retaining as
much flexibility as possible. To reach this goal, the idea is to make the radius of the neighbor-
hood function dependent on the local degree of folding. In practice, the neighborhood function
is still Gaussian (cf. 4.13) but in this variant, each cellhas its own neighborhood width
parameteo(i) determined by the local topographic error. The experimental results reported
exhibit a negligible topographic error compared to the basic SOM algorithm.

In [73], the authors treat the case where the variances of input vector components are not of the
same order of magnitude. As underlined before, the Euclidian norm is generally retained for
choosing the BMU. When the variances between the input vector components are of the same
order of magnitude, the choice of the Euclidian norm gives satisfying results. However, in the
opposite case, an oblique orientation of the map is produced. To obtain a better orientation of
the map, the authors propose to choose the BMU by using a weighted Euclidian distance in
which the weight parameters are estimated recursively during the learning phase in order to bal-
ance the effects of the variance disparity. A geometric interpretation of this weighting scheme
is that the equidistant surface around each reference vector in the input space becomes elliptic.
Therefore, if we desire to force each cell to "win” the competitive learning as often as the others,
one can add a constraint on the estimated weights in order to have a constant ellipsoid volume
per reference vector. It is worth noting that the problem of disparity in variances of input vectors
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components has been treated in a different way! i \vhere the author constructs iteratively

the lattice in order to efficiently match the distribution of input data.

In [3(], the author proposes a variant calleampetitive learning with conscience&his algo-

rithm is motivated by observing that all cells of the network are used but nothing ensure that
each cell is chosen as the BMU as often as the others and in consequence, some cells can de-
scribe some domains in the input space with a very low density. Ideally, it should be a valuable
characteristic of the network to force each cell to win the competition with a probabil%y of
wheren denotes the number of cells in the map. However, it has been noted that the basic Koho-
nen algorithm does not achieve this result but is biased in favor of the regions of lower density
of input vectors. The goal of the conscience mechanism proposed by the author is to bring all
cells available into the solution quickly, and to bias the competition process so that each cell can
win the competition with a probability close ﬁ) To reach this goal, the conscience process is
composed of two parts: the generation of the outputs of the competitive layer and the reference
vector updating. In the conscience mechanism, the BMU is not necessarily the one whose ref-
erence vector is updated. A bias is introduced based on the number of times each cell won the
competition. Therefore, the more a cell looses the competition and the more its reference vec-
tor is updated. Moreover, the more the probability of winning the competition is clolﬁ‘éouo

each cell, and the more the conscience mechanism is analogous to the basic Kohonen algorithm.
The experimental results reported have shown that the conscience approach is able to match the
density function of input data better than the basic SOM algorithm by using a reduced number
of learning steps. This approach has been successfully useépfar fesigning a model-based
object recognition system based on geometric hashing.

An other variant discussed in this section concerns the choice of the neighborhood and has been
discussed in'{3]. In this paper, the authors remark that when the input vector distribution has

a prominent shape, the choice of the BMU tends to be concentrated on a fraction of cells in
the map. Moreover, due to the successive applications of the updating ridg (t may easily

happen that the reference vectors lying in zero-density areas are affected by input vectors from
all surrounding parts of the nonzero distribution. Consequently, some cells usually remain out-
liers. To overcome this drawback, the authors propose a mechanism in which the neighborhood
relationships between cells are defined adaptively during the learning phase. For this purpose,
these relationships are defined by using the minimal spanning tree (MST) approach in which
the arc lengths are simply defined by the Euclidian norm between reference vectors in the input
space. The neighborhood of a cell is therefore the MST emanating from that cell.

Note that we have not discussed in this section about all variants aiming at building the lat-
tice structure during the learning phase. This kind of approaches will be presented in detail in
section4.6.4

4.6.1.7 Some Experimental Results

Figure4.10shows an example of application of SOM extracted framd.

The experiments illustrated here assumes a curved region G containing a sound source mov-
ing in a random way within G (see Figudel((a)). The sound is received by two microphones,
each connected to an amplifier with logarithmic characteristics, producing thus two output sig-
nalsvi andvs serving as inputs to a Kohonen network. This network is composed of 1600
neurons arranged in a 2D square lattice of size4@ As the input space is two-dimensional
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() (b)

(© (d)

Figure 4.10: Application of the SOM algorithm. (a) Experimental conditions. (b)Initial values
of reference vectors. (c)Values of reference vectors after 100 epochs. (d)Values of reference
vectors after 40 000 epochs.

(i.e. the inputs are the amplifier responses), each network cell is associated to a reference vector
with two components. Figuré.1(Qb) illustrates the initial value of these reference vectors that
have been randomly chosen inside the region G. After 100 learning steps, we can see (cf. Fig-
ure4.10(c)) that the map starts to reach a global ordering. After 40,000 learning steps, a good
correspondence between the reference vectors and the region G is obtained, as shown in Figure
4.1Qd).

4.6.2 Learning Vector Quantization

Up to this point, the SOM has been presented as an efficient unsupervised method to approx-
imate the density function of input vectors from a limited number of codewords. However, if
the problem to be solved is the classification of patterns, then the problem becomes a decision
process and must be handled differently. Indeed, whereas the SOM tries to find an optimal
placement of reference vectors in the sense of a distortion measure, a classification task has to
affect a set of input patterns to different classes while obtaining a low misclassification rate.
However, there is no guarantee that the basic SOM algorithm provides a placement of reference
vectors that minimizes classification errors. The use of SOM for pattern classification is obvi-
ous: each reference vector represents a particular class and an input pateategorized to

the class whose the associated reference vector is the clogedntthat case, the set of cell’s
receptive fields define the boundaries of each class. In a classification task, the classification
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errors appear to be located at the class borders and thus the reference vectors have to be up-
dated in order to shift the positions of these borders, resulting in improved classification rates.
To allow this updating step, a training data 3et {(p,|)} has to be built wherg denotes a

pattern to be classified(€ RY) and| is the known label (or category) ¢f Learning Vector
Quantization(LVQ) methods £5] have been proposed to update in an efficient way the original
reference vectors obtained by the basic SOM (or any other vector quantization method) in order
to reduce the classification errors. It is thus possible to define effective values for the reference
vectors such that they directly define near optimal decision borders between the classes, even in
the sense of classical Bayesian theory which is known to be optirtid]. [

LVQ methods can thus be considered as supervised alternatives to the basic SOM algorithm.
The starting point of each method presented below considers that a set of codewords defines a
partition of the input space in such a way that the overall statistical density function of the input
data is roughly described. The placement of these codewords could thus be performed by any
vector quantization algorithm or even the basic SOM algorithm. The next phase is to determine
the labels of the codewords, by presenting a number of input vectors with known classification,
and assigning the cells to different classes by majority voting. It is important to note that this
phase can conduct a single class to be represented by several reference vectors.

In the next section, we present different methods that can be used to finely tune the reference
vectors for a classification task.

4.6.2.1 Type One Learning Vector Quantization (LVQ1)

The main idea of this first method consists in pulling the reference vectors away from the de-
cision surface to demarcate the borders more accurately. Assumme:ttiahotes the reference
vector that is closest to the input vectowith a known classification. The reference vectors are
updated as follows (see Figufell(a,b)):

me(t+1) = me(t) +a(t)[x(t) —me(t)] if xis classified correctly
me(t 4+ 1) = me(t) —a(t)[x(t) —me(t)] if the classification ok is incorrect  (4.15)
mi(t+1) =mt) fori #c.

(b)

Figure 4.11: LVQ1 adaptation rule. (a) corresponds to the case whemrrectly classified,
whereas (b) corresponds to a misclassification

Let us recall that in these algorithms, the reference vectors are assumed to have a roughly
correct value and need only a fine tuning. For this reason, the learning(tatesed in ¢.15
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starts with very small values (e.g. 0.01) and decreases monotonically to zero.

Intuitively, one can see that this algorithm tends to reduce the point density of the reference vec-
tors around the Bayesian decision surfaces. Indeed, the difference between the density functions
of the neighboring classes, by definition, drops to zero at the Bayes border and experimental
results reported ind6] shows that LVQ1 allows to reach near optimal results compared to a
pure Bayesian approach.

4.6.2.2 Type Two Learning Vector Quantization (LVQZ2.1)

The LVQZ2.1 algorithm is based on the assumption that two closest reference vacamim;

in the input space are initially in the wrong position. The incorrect discrimination surface is
always defined as the midplane betwegrandm;. To consider this fact, a symmetric window

is defined around the midplane and the reference vestoasdm; will be updated if and only

if an input vectorx with a known classification falls into the wrong side of the midplane (see
Figure4.12).

window

3@

® >
0=
Figure 4.12: Window used for LVQ2 and LVQ 3 quantization methods

The updating rule is defined as follows:

]

)] if xfalls into the window

and G is the nearest class

but x belongs taCj # G

whereC; is the second nearest class
[ M(t+1) = my(t) otherwise.

[ mi(t+1) =mi(t) —o(t)x(t) —mi(t)
m; (t+1) = mj(t) +a(t)[x(t) — my(t
(4.16)

As mentioned in §6], the updating rule4.16 moves the reference vectors in such a way
that the midplane moves towards the crossing surface of the class distributions, and thus asymp-
totically coincides with the Bayes decision border.

Regarding the window width, it must be determined experimentally from the number of avail-
able samples. With a small input data set, a width of 10%-20% of the difference between
andm; has been judged as proper.

To avoid the drifting behavior of thay position, the updating rule4(16 has to be applied
during a limited number of steps-(10000) by using a small initial learning rate value @.02)

that will decrease monotonically to zero.

The main problem with this algorithm concerns the path followed by each reference wgctor
that is not controlled and that can result finally in a poor representation of the input data density
function. This problem is resolved by LVQ3.
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4.6.2.3 Type Three Learning Vector Quantization (LVQ3)

Two kinds of bad effects can be reported when using LVQ2.1.:

e because reference vectors correctiondiri§) are proportional to the difference rfand
mi, or x andm;, the correction ofn; (i.e. the correct class) is of larger magnitude than
that ofmy (i.e. the wrong class). Consequently, the distafroe— mj|| is monotonically
decreasing;

e it is not ensured that the reference vectors continue to approximate the density function
of the input data.

In the LVQ3 variant, we suppose that a single class can be represented by several different
reference vectors. The resulting new updating rule is defined as follows:

)] if x falls into the window

and wherem andm; are the two closest

reference vectors t©

and x andm; belong to the same class

while x andm; belong to different classes

whereC; is the second nearest class
[ M(t+1) = my(t) +ea(t)x(t) —m(t)] forke {i,j} if x,m,m; belong to the same class.

(4.17)
Experiments have shown thatl< € < 0.5 is applicable.The optimal value efseems to

depend on the size of the window. However, the great advantage of this algorithm is the self-
stabilization i.e. the placement of the reference vectors does not change by continuing learning.
In [86], the author reports experimental results for a speech recognition application in which
LVQ3 outperforms the two former approaches. Moreover, all LVQ methods have also exhibited
a better recognition rate than a classical Bayes approach.
Note also that other variants of these classical LVQ methods have been discussgd in [

4.6.2.4 Generalized Learning Vector Quantization (GLVQ)

More recently, the GLVQ method has been proposed #i][as an alternative approach to clas-
sical LVQ methods to classify data in a supervised way. This new method has been motivated
by observing that when using classical LVQ methods, the reference vectors diverge in some
cases, degrading thus the classification ability.

The basic idea of GLVQ consists in defining a new learning rule based on the minimization of
a cost function. Assume that; is the nearest reference vector that belongs to the same class of
the input vectox and likewise, letn, be the nearest reference vector that belongs to a different
class fromx. Let us now consider the relative differenafx) defined by (see Figuré 13:

di—dp

X) =
M(X) 41 d,
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whered; = ||x—w;||2, with ||.|| denoting the Euclidian normu(x) ranges from-1 to +1
andp(x) < 0 (resp.p(x) > 0) if xis classified correctly (resp. incorrectly).

Figure 4.13: Relative differences used by GLVQ

In order to improve classification ratggx) has thus to decrease for all input vectaraA
cost functionSto be minimized can thus be defined by:

p
S= ; F(u(x))

wherep denotes the number of input vectors, a@nig a monotonically increasing function.
To minimize S, my and mp are updated based on the steepest descent method with a small
positive constand:

0S
wi(t+1) :Wi(t)—aﬁ (4.18)

with i = 1,2. Computing the derivative% yields to the GLVQ learning rule:

my(t+1) = my(t) -l-a—ﬁ(x— my)

1) = ot of o (4.19)
mp(t+1) = mp(t) — 0 G Grayz (X — Me)-

Three important observations must be made by observirig)(

e contrary to classical LVQ learning rules, the updating wejgtin| depends or%fJl which
depends in turn af;

e to decrease the error rates, the reference vectors must be updated by using input vectors
around class boundaries in order to shift these boundaries toward the Bayes limit. Accord-
ingly, f(u) should be a non-linear monotonically increasing function and it is considered
that classification accuracy strongly depends on the definitidjof

e as just mentioned, the attractive and repulsive fofces | depends on the derivatives of
K. Consequently, the reference vectors will converge to an equilibrium state defined by
these forces. Therefore, it can be considered that the convergence property depends on
the definition ofp.
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The GLVQ method is really a generalization of classical LVQ learning rules in the sense
that a proper definition oft and f can lead t04.15),(4.16) or (4.17). Furthermore, it is also
possible to obtain other learning algorithms by defining a different cost function, but as men-
tioned before, it is important to note that the convergence property depends on the definition
of this cost function. Following this remark, it has been shownlif] that the convergence
property is not satisfied by LVQ2.1, contrary to the GLVQ algorithm.

Experimental results presented in3[] have shown that GLVQ outperforms classical LVQ
methods for a character recognition application. Moreover, experiments have shown that the
use a non-linear functiof(p) clearly improves the recognition rates compared to a linear ver-
sion of f.

4.6.3 Quantitative Measures

Many mathematical studies have been reported in the literature for analyzing the properties
of SOM such as convergence(] 34, 87, \ ], reconstruction error, topographic error

[7, 82, 83, ) ], etc. In this section, we propose to review some quantitative measures
that can be helpful to measure the reconstruction and topographic error induced by the mapping
computed by the Kohonen algorithm.

4.6.3.1 Reconstruction Error

As underlined before, the Kohonen algorithm is closely related to vector quantization and data
compression. Compressing the data works by approximating each data to be compressed by
a codeword with the same dimension. Of course, reaching an acceptable compression ratio
leads to use less codewords than input generating thus a reconstruction error with an order of
magnitude of|x — m¢|| if x designates the input vector ang the codeword yielding the most
accurate approximation of The problem consists thus to find a good placement of the set

M of codewords in the input space in order to minimize the overall reconstructionEerrér
mathematical formulation of this yields to:

E(M) = / Ix— my || 2P(x)dx (4.20)

whereP(x) denotes the density function of the input data vectoasd my the codeword
associated tx. Note that the minimization oE(M) has to be reached with the constraint
of a predefined limited number of codewords. The minimizatiok @) with respect to the
reference vectonsy is a complicated, non-linear optimization problem, for which in most cases
no closed solutions are known. For this kind of problem, iterative approximation methods are
applicable. The simplest approach to minimiZe2() with respect tom is to use gradient
descent. Assuming that initial values(0) have been defined in a proper way, the reference
vectors updating rule is defined by:

m(t+1) =m(t)-$5

= M (1) + 0 g _o(X— Me(t) P(R)dx (4.21)
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The integration conditios(x) = c restricts the region of integration to thosevalues for
which m; is the most suitable reference vector ijex — me|| = min||x — m||.(4.21) has been
|

firstly proposed in the LBG (or k-means) procedui€][ Although this updating rule does not
ensure the convergence toward a global minimum, the quality of the reference vectors localiza-
tion is sufficiently good in many cases. However, updating a reference vectequires the
knowledge of the densitly(x) of input data, which is not available in most cases. To overcome
this problem, 4.21) can be replaced by an incremental approach:

me(t+ 1) = mg(t) + a(x—me(t)) (4.22)

wherem. denotes the codeword the most similaxtoe. the one minimizing|x — m|| for
all codewordsn. By this way, for a sufficiently small constaat the accumulation of many
individual steps of4.22) by using data vectors selected at random leads to an approximation of
the integration in4.21). At this point, it is interesting to note that.¢1) is closely related to the
kernel-based learning rulé (L2 used by the Kohonen algorithm with a vanishing neighborhood
function hgj = & [129. The SOM learning rule can thus be seen as a generalization of the
vector quantization procedure classically used for data compression.
If we analyze 4.21), one can see that the shift of the reference vattarccurs in the direction
of the center of gravity/r XP(x)dx whereF; denotes the receptive field of the codewang
i.e. the set of input vectors that are well approximatedgy Therefore, 4.21) leads to a
distribution of reference vectors in which each vector coincides with the center of gravity of the
data in its receptive field. This procedure is well-known in the area of data clustering since it
corresponds to the k-means algorithm. If we now make an analogy with the Kohonen algorithm,
the distribution of reference vectors is somewhat different due to the use of the neighborhood
functionhgi (see ¢.12). The average shift of a reference vector is then:
am =S hy /F (Xx—m)P(x)dx (4.23)
| |
In that case, the shift ofry occurs in the direction of the mean center of gravity of all
receptive fieldds, the contribution of each field being weighted by the neighborhood function
he;. Consequently, the learning rule induced by the use of the Kohonen algorithm does no
longer lead to the minimization of the reconstruction erro2() but to the minimization of
(4.23. Therefore, the Kohonen algorithm tries to find a tradeoff between a good representation
of input data (by minimizing a modified version of the reconstruction error) and the preservation
of topology (by the use of the neighborhood function).

4.6.3.2 Preservation of Topology

SOMs can be characterized by two main properties: a good representation of the density func-
tion of input data by a set of reference vectors, and the preservation of the input space topology.
The quality of the placement of the reference vectors is classically measured by the reconstruc-
tion error as shown in the previous section. However, the preservation of the topology is more

difficult to assess and is closely related to the dimensional conflict existing between the input

space and the output space (i.e. the lattice). Roughly speaking, the topology of the input space
is preserved if: (i) nearby reference vectors in the input space are mapped onto neighboring
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locations in the output space and (ii) two neighboring dedisd j are associated to nearby ref-
erence vectorsy andm; in the input space. However, what is the meaning of "nearby reference
vectors™?

Mathematically speaking, a SO¥h m can be defined by two mapping$,—.m and¥y_—.a
defined by:

SA,M:{wA_’M:A_)M;IGAHmEM (4.24)

Wy_a: M — A XEMP—>i*(X)€A

wherei*(x) denotes the BMU associated to the input veatoet us recall that this cell is
defined by:

i*(x) =arg min|m —x|| vVi=1,2,...,n
|

wheren denotes the number of cells in the lattise
Now, two reference vectors are said to be adjaceht (what we called "nearby” previously) if
their associated receptive fielBsandR; defined by the masked Voronoi polyhedra are adjacent
in M i.e. R NR; # 0. These receptive fields are defined by:

R = {X€M, [x—m|| < x—m] vj € A} (4.25)

Regarding the neighborhood property within the lati#cewo cellsi and j are said to be
adjacent inA if and only if they are nearest neighbors in the lat#cen the sense of a norm
defined inA (usually, the Euclidian norm is used).

Many measures have been defined in the literature to quantify the topology preservatian [

! , 134 that can be used to exhibit a dimensional conflict between the input and the output
spaces.
One of the earlier and most popular measure igdpegraphic producintroduced in ] that
guantifies the preservation of neighborhood relationships in maps between spaces of possibly
different dimensionality. To justify the topographic product idea,n@(ﬁ) be thek!" nearest
neighbor of the cell in A, in the sense of a distandé expressed in the lattic& In the same
way, let nQ"(i) be thek!" nearest neighbor (among all reference vectors) of the vegttut
with a distance measut? expressed in the input spale From this quantities, we define the
ratios:

. ( ’
QK= Fmme ) (4.26)

Q2(],k) = dA—'nW’%

From (@.26), we haveQs(j,k) = Q2(j,k) = 1 if the nearest neighbors of orden the input
and output space coincide. Any deviation@fandQ, from 1 denotes a violation of the nearest
neighbor ordering in the ma®1 andQ_ are then combined yielding to:

K 1
|=

128



Thanks to the inverse nature @4 andQ2, neighborhood violations are detected Ry
1. More precisely, the deviation ¢&% above or below 1 indicates whether the embedding
dimension ofA is too large or too small, respectively.
Finally, the topographic produétis defined by averagings for all values ofj andk:

1 n n-1

P= A S S log(Ps(j,k). (4.28)

]=1k=1

This last formulation is motivated by observing that one are mainly interested in deviations
from 1.
More recently, Villmaret al. [138] explained that the preservation of the topology depends on
the lattice structuré\ but also on the form of the manifolsl. However, this last parameter
is often unavailable and the lattice structdrés chosen empirically. Without considering the
shape of the data manifoM, the authors underline that none topology preservation measure
is able to reach satisfying results in the case of non linear data manifolds. To overcome this
problem, they propose a new measure cattgmbgraphic functiorthat explicitly considers the
structure of the input data manifold. For a rectangular latidde topographic functio®) (k)
is defined by:

15ieafi(k) fork >0
PN (k) =¢ oN(-1)+dM(1) fork=0 (4.29)
15ieafi(k) fork <0

wheren denotes the number of cells &) and the functiorf is defined by (fok > 0):

{ fi(k) = #{J, [l — il max>k, d™M(i, j) = 1}
fi(=k)=¢{i,[li—ill=1,d™(,j) >k}

in which:
o ||.|Imax= rﬁ??q(.)” with da denoting the dimension of the lattiée
=

e ||.|| denotes the classical Euclidian norm;

e Dy is the Delaunay triangulation obtained from the set of reference vegtorghis
triangulation induces the metrit”™ in which the distance between two reference vectors
is determined by the length of the shortest path in the Delaunay graph.

fi(k) (resp.fi(—k)) measures the topology preservation obtaine®hy A (resp.Wa—.m)
and CDX'(O) = 0 if and only if the SOM mapping perfectly preserves the topology. Moreover,
the largest valuekt > 0 for which ®¥ (k™) # 0 holds yields the range of the largest fold if
the effective dimension of the data manifdlis larger than the dimensiady of the lattice
A. Conversely, the smallekt < 0O for which CDX'(k_) = 0 holds yields the range of violations
of topology preservation if the effective dimension of the data manifivlds smaller than the
dimensionda of the latticeA. As a result, the values & andk™ give information about the
degree of the dimensional conflict. Small values indicates only a local dimensional conflict
whereas large values indicate the global character of the conflict.
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It is important to note that in the case of a linear data maniM|dthe topographic product

(4.28 and the topographic functiod 29 give the same results. However, whighbecomes

non linear, only the topographic function exhibits a correct behaviorl 36]] the authors have

also extended the definition of the topographic function to more general lattice structures.

In [83], the author observes that although the topographic function is a good measure, it does
not result in a scalar value but in a function dependingpomcreasing thus the comparison
between two mappings. To overcome this problem, the author proposes a simple measure called
thetopographic errorand that averages the number of times the BMU and the second BMU are
not adjacent. This measure is defined by:

& = > U(x) whereu(xq) = 0 otherwise.

12 { 1 if BMU and second-BMU are not adjacent
P&

Intuitively, & measures the local discontinuity in the sense that when two similar input
vectors are mapped on distant cells, the mapping is no more continuous.
In[110], an other measure is proposed, also based on the masked Delaunay triangulation. Here,
the topology is considered as preserved if the Delaunay triangulation coincides with the output
network shape. In this new measure, the topology preservation at theisekfined by two
ratios:

Y (i) = 0 8 (m.m;) =L andd Wi j)=1)
- #{j, d®m) (my,mj)=1
Y- (i) = £ 0 mm)=1 andd Vi, j)—1)

#{J, d®(m,mj)=1

whered(™) (resp. d®) denotes the distance computed in the Delaunay graph associated
to the set of reference vectors (resp. in the output lattice). Both distances are graph-based in
the sense that they represent the number of edges to follow in order to link two nodes. In the
case wheré&* (i) andY (i) becomes 1.0 for all neurons, then the masked Delaunay graph of
the input space coincides with the lattice structure. An important result of this method is that
the Kohonen algorithm using rectangular lattice is not able to reach the topology preservation
for uniform distribution contrary to the use of an hexagonal lattice.

4.6.4 Dynamic Architectures

As we saw up to now, one of the limitation of SOM is that the structure of the lattice has to be
predetermined prior to learning. The definition of the lattice structure includes the dimension
of the network, the number of cells in each dimension (and thus the total number of cells) and
the topology of the map (rectangular, hexagonal, etc.). This limitation conducts inevitably the
user to run several simulations with different network structures in order to pick the optimal
network. Moreover, the use of a fixed and regular topology (such as a rectangular one) cannot
perfectly reflect the structure of input data or disjoint clusters that may exist in the input space.
For example, discontinuities in the input space may appeared bridged in the thagh¢é map

may have connections that span disjoint clusters or it may have reference vectors located within
discontinuities where the probability density function of input data is zero.
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Regarding the dimension of the lattice, 2D maps are generally retained for visualization pur-
posed as well as ease in implementing SOM.

To overcome the problems discussed above, some dynamic map architectures have been pro-
posed P, 15, 47, 90, ] in order to provide a better representation of input data. The main
properties of these alternative structures are their ability to grow and change their structure in
an incremental way.

In this section, we present some of the most popular dynamic architectures proposed in the
literature. Sectiont.6.4.1reviews some dynamic flat 2D topologies, whereas seetiént.2

present the hierarchical variants.

4.6.4.1 Flat Topologies

In [15], the authors propose a method called IG@Gc(emental Grid Growinythat builds in

a dynamic way a lattice structure in which non-convexities, disconuities and clusters present
in the input data set are explicitely represented in the 2D output lattice. To reach these goals,
the proposed method is incremental and starts with only four connected nodes with reference
vectors randomly chosen among training data. The learning phase is performed on these four
nodes according to the basic SOM algorithm and eachi ¢ellintains the quantization error

gg related to its own reference vectors. In the IGG approach, only nodes located at the map
boundaries are allowed to grow and at each iteration of the algorithm, the boundaiycell

with the highest quantization error is expanded toward all free neighboring locations (see Figure
4.14).

Figure 4.14: Growing rule used by the IGG method

The new added cells are connectedde and the reference vectors of these cells are in-
terpolated from neighboring reference vectors. Initially, the new nodes are thus connected to
the structure throughy,. Then, when the structure continues to organize, the new nodes may
develop reference vectors that are close to their neighbors counterpart to which they are not
connected. In this case, it is desirable to connect non connected cells with close reference vec-
tors. Conversely, connected nodes with distant reference vectors must remove their connection.
To reach these goals, IGG defines two thresh@lgand®, used as follows:

o if ||[m —m;j|| > Oy, the connection betweerandj is removed,

e if ||[m —m;j|| < ©y, a connection betweedrandj is created.
By adding nodes at the perimeter of the lattice, the map is able to develop an arbitrary

topology. Moreover, adding nodes only in areas that inadequately represent the input data
encourages the map to develop only those topological structures that are actually present in
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the input space. Finally, disconnecting nodes that span discontinuities allows clusters to be
separated before continuing to develop independently of each others.

In [2], the author present a method called GSGBAqwing Self-Organizing Mapnspired from

IGG but that brings some improvements to the former method. The main improvements are the
use of an adaptative learning rate, the consideration of non boundary nodes and the definition
of a spread factor controlling the development of the map. In the GSOM method, the lattice
starts with four connected nodes as in the basic IGG approach. However, the authors underline
that using a small number of nodes has a direct impact on the learning (tatelndeed, a

same BMU is selected for very different input vectors, making the associated reference vector
oscillate in the input space. To overcome this problem, an adaptative rule is proposed to set
the learning rate value: the learning rate depends on the number of cells in the lattice. The
higher is the number of cells, the higher the learning rate. The second improvement considers
the non boundary cells holding a localized quantization error greater that the thré&shaked

to decide if a node has to grow. In the basic IGG approach, such a node cannot grow because
it is not located on the map perimeter. In GSOM, the idea consists in artificially reducing its
associated quantization error while increasing the quantization error of the neighboring nodes.
By this way, non boundary nodes have the ability to indirectly initiating node growth. The last
improvement concerns the definition of a spread fa8téthat can be used to control the spread

of the map. As mentioned before, a thresh@If is used to decide when a node can initiate the
growing process. Therefore, a larGd results in an abstract picture of input data with a small
number of nodes whereas a sm@ll results in a more spread map. Howev@il depends

the dimension of input data as well as the number of cells, both parameters depending on the
feature space and the time index since the map grows dynamically. The use of such a threshold
is thus very difficult for an analyst who wants to control the map growth. Moreover, it is also
very difficult to compare maps of several data sets sd€ecannot be compared over different

data sets. To tackle this problem, a spread fastois defined (0< SF < 1):

GT = —D.In(SF)

whereD denotes the dimension of input data. Now, instead of having to provide the thresh-
old GT, the analyst has just to provide a scalar value from which the asso&atealill be
deduced.
The Growing Grid method discussed in']] is different of IGG and GSOM in the sense that
the lattice structure remains rectangular during the organization process. This method defines
an incremental approach that converges toward a ratio with/height well suited to input data.
This model uses locally accumulated statistical measures to decide where to insert new rows or
columns into the initially small lattice. The properties of the new inserted cells are then inter-
polated from information extracted in the neighboring nodes. This algorithm is based on the
use of a resource variabtefor each cell that maintain the number of times the aellon the
competition. AfterA steps of the learning adaptation rule, the algorithm selects the tdit
won the most often the competition i.e. such that 1; Vi. The cellg denotes a dense area in
the input space that should be represented by more cells. To reach this goal, the néighbor
g with the most different reference vector is selected and a row or column is inserted bgtween
andf (see Figuretl.15).

The reference vectors of the new cells are then interpolated from the neighboring reference
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(b)

Figure 4.15: Growing rule used by the Growing Grid method. Column insertion rule (a) and
row insertion rule (b).

vectors. The algorithm stops when the desired number of cell is reached or when each cell
represents approximatively the same amount of input signals.

4.6.4.2 Hierarchical Topologies

The second kind of dynamic architectures are composed of several SOM layers arranged in a
tree data structure. They provide thus a hierarchical ordering of cells and have been motivated
by the following observations:

¢ in the basic SOM using flat topologies, the number of cells needed to provide an efficient
representation of input data increases exponentially with the dimension of the input space,
leading thus to a computational complexity®@fn) wheren is the number of cells. The
use of a tree reduces this complexity@dog(n));

e by using flat topologies, hierarchical relations between input features are very hard to
discern although these properties are of prime importance for some applications such as
data mining, pattern recognition, etc.

e finally, a hierarchical representation of input features allows to tune the desired level of
resolution: a coarse resolution is obtained at the higher levels (i.e. the input data are
represented by a small number of cells) whereas the resolution is increased at the bottom
levels. By this way, we obtain a multi-resolution scheme for feature selection in which at
different hierarchical levels, a different level of generalization is obtained.

The first hierarchical structure proposed in the literature was the TSTFd Structured
Topological Feature Mapalgorithm discussed ire[J). This algorithm is an extension of the
well-known TSVQ (Tree Structured Vector Quantizatipalgorithm [50] used for vector quan-
tization. In TSVQ, the codewords are arranged in a tree data structure and the search of the
best matching codeword is performed in stages. In each stage, a substantial subset of candidate
codewords is eliminated from consideration. In TSTFM, lateral connections between cells are
considered (as in the the basic Kohonen network) conducting to the construction of a pyramid
data structure instead of a classical tree (see Figur@.

As in TSVQ, the training takes place at the root node. When the organization of a cell
at any hierarchical level is completed, the plasticity of that cell is frozen and the procedure is
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Figure 4.16: Tree data structure used by TSVQ and pyramidal data structure used by TSTFM

applied for the units on the subsequent layers. The BMU selection and the reference vectors
updating rule are however different in TSTFM from those applied in TSVQ. In TSTFM, the
BMU selection is performed by a tree search as in TSVQ but at each step, a lateral search is
also done to find the BMU. Regarding the updating rule, the nearest neighbors of the BMU are
updated similarly to the standard SOM algorithm. This kind of hierarchical architecture has,
for example, been successfully applied in the design of the PicSCM PicSOM is a very
interesting CBIR Content-Based Image Retrieyalystem based on MPEG-7 descriptars{]

and that makes use of SOM for classifying images into semantic categories.

In [120], the author propose an algorithm called GHSOBdwing Hierarchical Self Organiz-

ing Map) that combines a hierarchical structure and @rewing Grid method [ 7] discussed
before. In this approach, each independent SOM has a dynamic rectangular topology (as spec-
ified in the Growing Grid algorithm) but each cell can also grow in the vertical dimension,
creating thus a new map in the next hierarchical level. As a result, the final map is composed of
several independent growing SOMs arranged in a tree data structure (seedFigure

J

}Layer 3

Figure 4.17: Hierarchical lattice structure obtained by the GHSOM method
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GHSOM is composed of three main steps. In the first step, the network is built with 2
connected cells. At the root level, a virtual cell is created whose the reference vector is the mean
of all input vectors. This cell maintains its associated quantization ggpthat will be used
in the next level to govern the growing phase. The reference vectors of the first map composed
of 2 x 2 connected cells are chosen in a random way. In the second step, the map organization
is performed according the the standard growing grid method. This step is performed until the
guantization error associated to the current map is below a certain fraction of the quantization
error associated to the parent node. When the learning phase is completed at a given hierarchical
level, each cell is analyzed to decide whether it must be splitted in a subsequent level. This
decision is made on the basis of the error quantization associated to the analyzed cell. If this
error is greater than the authorized threshold, the cell is splitted into a new small map composed
of 2 x 2 connected cells. However, the initialization of reference vectors is no more random to
avoid topological distortion between neighboring maps. In order to reach a global orientation of
maps in the different hierarchical levels, the orientation of each map must refer to the orientation
of input data falling in the receptive field of the parent node. As a result, GHSOM obtains a
hierarchical architecture in which rectangular SOMs with possibly different sizes are present at
each level.

4.6.5 Conclusion

In this section, we have proposed a first overview of the SOMs by discussing several aspects
such as the basic Kohonen algorithm, its variants, the quantitative measures and the dynamic
lattice structures. As we saw, SOMs are a very efficient tool to perform vector quantization
while preserving the topology of the input space. In consequence, they are applied in many
research fields that we cannot review in detail here due to the reduced space. However, we
invite the interested reader to refer t] 114] to get an exhaustive lists of approaches related

to SOMS. Of course, this document has not discussed all interesting variants of SOMs, such as
the use of SOMs for non vectorial data or the learning of SOMs parameters, but it will evolve
with time to resolve this drawback.

4.7 Cluster Validity Analysis

An unsupervised learning procedure is usually more difficult to assess than a supervised one.
Several questions can be asked regarding the application of clustering methods:

Are there clusters in the data?

Are the identified clusters in agreement with the prior knowledge of the problem?

Do the identified clusters fit the data well?

Are the results obtained by a method better than those obtained by another?

The first question concerns tlotuster tendencyf the data and should in principle be an-
swered before attempting to perform clustering, using specific statistical tests. Unfortunately,
such tests are not always very helpful and require the formulation of specific test hypotheses.
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The other questions concern the analysis of cluster validity and can only be answered after
application of clustering methods to the data. Accordingstd,[one can distinguish between
three types of validation procedures:

e Externalvalidation consists in finding an answer to the second question above and can
only be performed when prior knowledge of the problem is available. The prior knowl-
edge may concern general characteristics of the clusters (e.g. expected compactness) or
relations between specific items (e.g. items A and B should belong to a same cluster and
item C to a different one). Sometimes this knowledge is confirmatory but not prescriptive.

¢ Internalvalidation concerns the third question above and is based on an evaluation of the
“agreement” between the data and the partition. In the following we give a few examples
of validity indices that were put forward in the literature for some of the above categories
of clustering methods. Note that the definitions of these internal validity indices usually
make their direct optimization intractable.

In [14] several indices for crisp clustering are evaluated: the modified Hubert’s statistic,
related to the alignment between the dissimilarity matrix and the crisp partition matrix,
the Davies-Bouldin index, roughly defined as the ratio between within-cluster scatter and
between-cluster separation, and Dunn’s index with several alternative definitions (some
of which are introduced in1[4]) for the diameter of a set and for the distance between
sets.

For fuzzy partitional methods, internal validity indices should take into account both the
data items and the membership degrees resulting from clusteringavEiage partition
densityin [4£] is obtained as the mean ratio between the “sum of central members” (sum
of membership degrees for the items close to the prototype) of each cluster and the volume
of the cluster. The Xie-Beni index put forward ifn/7] is the ratio between the average
intra-cluster variation and the minimum distance between cluster centers, and is thus
related to the ratio between intra-cluster and inter-cluster variance.

Among the validity indices suggested for density-based clustering methods, we mention
the two in 17]: the first one measures the variation of cluster labels in the neighbourhood
of data items, the other evaluates the density on the path between data items.

e Relativecomparisons attempt to provide an answer to the fourth question above and are
usually the main application of the indices defined for the internal validation. Such com-
parisons are often employed for selecting good values for important parameters, such as
the number of clusters.

The question of cluster vanlidity analysis is also discussed in some detail in séddion
where cluster validity is a key issue in determining the usefulness of feature subsets.
4.8 Conceptual Clustering

Classical clustering methods only create clusters but do not explain why a cluster has been es-
tablished. Conceptual clustering methods built clusters and explain why a set of objects confirm
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a cluster. Thus, conceptual clustering is a type of learning by observations and it is a way of
summarizing data in an understandable man#dr [n contrast to hierarchical clustering meth-
ods, conceptual clustering methods built the classification hierarchy not only based on merging
two groups. The algorithmic properties are flexible enough in order to dynamically fit the hi-
erarchy to the data. This allows incremental incorporation of new instances into the existing
hierarchy and updating this hierarchy according to the new instance. Known conceptual clus-
tering algorithms are Cluster/S77], Cobweb B1], UNIMEM [ 98] and conceptual clustering

of graphs [ 1.

4.8.1 Concept Hierarchy and Concept Description

A concept hierarchy is a directed graph in which the root node represents the set of all input
instances and the terminal nodes represent individual instances. Internal nodes stand for sets
of instances attached to that nodes and represent a superconcept. The super concept can be
represented by a generalized representation of this set of instances such as the prototype, the
mediod or a user selected instance. Therefore a concept C, called a class, in the concept hierar-
chy is represented by an abstract concept description and a list of pointers to each child concept
M(C)={C4, Co,..., G,..., G}, whereC; is the child concept, called subclass of concept C.

4.8.2 Category Utility Function

Category utility can be viewed as a function of the similarity of the objects within the same class
(intra-class similarity) and the similarity of objects in different classes (inter-class similarity).
The goal should be to achieve high intra-class similarity while low inter-class similarity. The
category utility function can be based on:

e a probabilistic concepty] or
e a similarity based concepi {5.

The category utility function in COBWERB is defined based on the probabilistic concept. The
category utility function is defined as the increase in the expected number of attribute values that
can correctly guessed.

4.8.3 Application in Image Processing and Understanding

Conceptual Clustering has been used for differernt types of problems in image processing and
understanding. For image segmentation it was used’ip [For learning the case-base index

for high-level image interpretation it was used in [j. For learning general forms of objects it

was used inT19.

4.9 Ontology Derivation

Ontologies are popular in a number of fields such as knowledge engineering and representation,
gualitative modeling, database design, information modeling and integration, object-oriented
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analysis, information retrieval and extraction, natural language processing, knowledge man-
agement, agent systems, and mc#€].[ In addition to those fields, research analyst com-
panies report on the critical roles of ontologies in areas such as, browsing and searching for
e-commerce, and for interoperability for facilitation of knowledge management and configura-
tion [104. Ontologies are becoming essential in many on-line applications including Yahoo!,
Google, Amazon, and eBay.

However, the problem of their construction and engineering remains not to be completely
solved and their development today is more craft than a science. Automated ontology construc-
tion tools provide little support to knowledge acquisition. Therefore, the ontology construction
process becomes time consuming and this leads to the fact that their wide usage has been lim-
ited.

Several approaches to the ontology acquisition from documents exist, each one with a dif-
ferent perceptive and from a different point of view. Some of them are completely automated,
some are semi-automated. This report has as main purpose to shed some light in the ontol-
ogy acquisition from documents domain, by presenting the most important and most prominent
approaches along with some details about them.

4.9.1 Ontology Definition

The Atrtificial-Intelligence literature contains many definitions of an ontology.

The term is borrowed from philosophy, where the ontology is a systematic account of Exis-
tence. According to The Free On-line Dictionary of Computing an ontology is an explicit
formal specification of how to represent the objects, concepts/classes and other entities that are
assumed to exist in some area of interest and the relationships that are held among them.

The following definitionp4] is widely used.

An ontology is the specification of conceptualizations, used to help programs and humans
share knowledge. In this usage, an ontology is a set of concepts/classes - such as things, events,
and relations - that are specified in some way, such as specific natural language, in order to
create an agreed-upon vocabulary for exchanging information.

A more formal definition, is given by Maedche and Stdal], an ontology can be de-
scribed by a 5-tuple consisting of the core elements of an ontology such as concepts/classes,
relations, an hierarchy, a function that relates classes non-taxonomically and a set of axioms.
Then the ontologp = {C,R H, f,A} consists of:

e C, classes anR, relationships, are two disjoint sets.

e H, class hierarchyf:HC C x C also called taxonomyH (c1,c2) means that; is a sub-
concept or a subclass of clags

e f , afunction that relates classes non-taxonomicdllyR — C x C
e A, a set of ontology axioms expressed in appropriate logical language
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4.9.2 Ontology Acquisition From Text

The understanding of ontologies is different among different researchers, this therefore causes
them to differ in their point of views and approaches. However, the basic idea of all of these
approaches and views is quite similar and could be simply describe as:

Taking a set of textual documents, running a sophisticated tool and getting an ontology as
the resultf19]

While information contained in textual documents could be understood as flat representa-
tion, knowledge represented in ontology is hierarchical. The way from flat to hierarchy, from
information to knowledge is not so trivial and incorporates many scientific fields such as Natu-
ral Language Processing, Machine Learning, Information Extraction, Clustering, Classification
and so on.

Two ontologies describing the same domain might be completely different and in addition,
if two people are given the same set of documents and are asked to outline an ontology, their re-
sults will certainly be different. One of them might concentrate on one hierarchical aspect while
the other on another one. The question here is what information, concepts and relationships we
are mostly interested in from a given set of documents. Therefore, the tool should explicitly
know or should be built for a specific task, otherwise it will not be able to determine what is
important for us and what is not.

Splitting the basic idea down, many different problems have to be faced. Some of them are
listed here:

e Recognize concepts/classes

Define slots for each class

Discover taxonomic relationships

Discover non-taxonomic relationships

Extracted ontology versus the truth

Ontology population with instances

¢ Ontology refinement and maintenance

The vast number of tasks that need to be undertaken in order to fulfill the basic idea has lead
the researchers to concentrate on one aspect at a time.

4.9.3 Towards Ontology Acquisition

There are many trends in ontology construction, each one concentrating in specific methods.

The first one discovers non-taxonomic relations from text and enhances an already taxonomic

hierarchy based on association rules. The second one discovers taxonomical relationships and
places discovered concepts into hierarchy, based on clustering of sub-categorization frames.
The third one, is based on modified self-organizing maps and the last two ones use statistical

methods.
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49.3.1 Text-To-Onto

The first approachl[03 ] deals with discovering non taxonomic relationships from text
and enhancing already defined taxonomic hierarchy. The Text-to-Onjafystem uses shal-

low parsing as a natural language module. This module consists of tokenizer, morphological
and lexical processing and chunk parsing that uses lexical resources to produce mixed syntac-
tic/semantic information. The output of this module is then XML-tagged text.

The learning component is for discovering non-taxonomic relationships. The system is
based on discovering generalized association rifes[ The mining generalized association
rules is an extension to mining association rules technique - Apriori algorithm. While the orig-
inal Apriori algorithm considers all items to be completely disjoint without any hieranatii (
andbreadare considered to be as similarRepsiandSpriteor bicycleandtea), the extension
towards generalized association rules consieyssiand Spriteto be sodg andsodais con-
sidered to be &everage milk andbreadis food while bicycleandtea share only one class -
item

Taking the hierarchy of items might result in getting association not just between instances
(items at the lowest level “crunchy chips” and “diet coke”) but also between classem@ck
andsodg or between a class and an instant@unchy chips” and“soda”). Therefore, the
result of their learning module is a set of couples/classes that is understood as a relationship
between them. However, there are two issues that need to be solved. One, is that the number
of irrelevant rules is very high among a small number of interesting ones. The other problem
is, that relationships are unlabeled. The algorithm extracts some rules between thenaadke.
andsodabut one does not know what this relationship is, nor knows what direction it goes.
Having only unlabeled relationships is not sufficient enough.

In addition to taxonomic relationship that is needed prior to relationship extraction, the
system also requires a lexicon. The lexicon defines what class a particular item is part of. For
example, instances such Bspsi, Coke, Spritare sodasHilton, Marriott, Balagioare hotels;
Bancha, Earl Gray, Chinese powdare teas. A lexicon is needed in order for the learning
module to understand that for examparriott is a hotel.

Text & Processing Management ComponenThe ontology engineer uses the Text & Pro-
cessing Management Component to select domain texts exploited in the further discovery pro-
cess. He/she chooses among a set of text (pre-)processing methods available on the Text Pro-
cessing Server and among a set of algorithms available at the Learning & Discovering compo-
nent. The former module returns text that is annotated by XML and this XML-tagged text is
fed to the Learning & Discovering component.

Text Processing ServerThe Text Processing Server may comprise a broad set of different
methods. In Text-to-Onto project, it contains a shallow text processor based on the core sys-
tem (Saarlucken Message Extraction Systerm)i]. SMES is a system that performs syntactic
analysis on natural language documents. In general, the Text Processing Server is organized in
modules, such as a tokenizer, morphological and lexical processing,and chunk parsing that use
lexical resources to produce mixed syntactic/semantic information. The results of text process-
ing are stored in annotations using XML-tagged text.

Lexical DB & Domain Lexicon. Syntactic processing relies on lexical knowledge. In
Text-to-Onto, SMES accesses a lexical database which is used for lexical analysis and chunk
parsing. The domain-specific part of the lexicon (abbreviated “domain lexicon”; cf. Left lower
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part) associates word stems with concepts available in the concept taxonomy. Hence, it links
syntactic information with semantic knowledge that may be further refined in the ontology.

Learning & Discovering component. The Learning & Discovering component uses var-
ious discovering methods on the annotated texts, e.g. term extraction methods for concept
acquisition. It uses the learning algorithm for discovering generalized association rules already
described. Conceptual structures that exist at learning time (e.g. a concept taxonomy) may
be incorporated into the learning algorithms as background knowledge. The evaluation of the
applied algorithms is performed in a submodule based on the results of the learning algorithm.

Ontology Engineering Environment. The Ontology Engineering Environment ONTOEDIT,
which is a submodule of the Ontology Learning Environment TEXT-TO-ONTO supports the
ontology engineer in semi-automatically adding newly discovered conceptual structures to the
ontology.

4.9.3.2 ASIUM

Asium|[38, 37] is able to learn semantic knowledge from text. In this context it means extracting
concepts/classes and putting them into taxonomic relationship. It is a semi-automatic system
meaning that user’s control is needed in the process. Asium learns semantic knowledge and
ontologies in the form of subcategorization frames of verbs. A sub-categorization frame in this
context is defined as:

<verlb> <preposition or syntactic role: headwordpreposition or syntactic role: headword

For example, a sub-categorization frame of the sentelgefather travels by cars: <to
travel> <subject: father <by: car>. The system uses a stop list and it only takes headwords
into consideration, So all articles, adjectives, eta, the, my, your, nice, beautiful, etcare
considered noise and are ignored, due to them still being believed to be preserved semantic
information. Moreover, syntactic parser Sylex identifies whether headwords are expressions,
i.e. double decker, Ford Escodr single words. The syntactic parser gives all possible frame
interpretations of sentences and ASIUM uses all of them for this approach to avoid a very time
consuming hand disambiguation step while still giving a good outcome.

Once each sentence has been instantiated into a frame the learning component takes them as
input and learns an ontology. This step incorporates unsupervised clustering (bottom-up) and
relies on the following assumption:

Headwords occurring after the same preposition or syntactic role, and with the same verbs
represent the same concept.

For example fromkto travel> <subject: father <by: car> and<to travel> <subject:
father> <by: train> one can conclude thatar and train represent the same concept, i.e.
motorized vehicle.

This assumption is implemented in two steps. The first step gathers headwords that occur
in the same contexts such as with the same verb and the same preposition or syntactic role. The
second one builds synthetic frames according to verbs of subcategorization frames and assigns
number of occurrence in the given context. For example, from the following instantiated frames:

<to travel> <subject: father <by: car> <to travel> <subject: mother <by: train>

<to drive> <subject: friend> <object: car-

<to drive> <subject: colleague <object: motorbike-
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<to drive> <subject: friend> <object: motorbike-

Asium might create synthetic frames, one per verb:

<to travel> <subject: [father(1), mother(1}] <by: [car (1), train(1)}

<to drive> <subject: [friend(2), colleague(1}] <object: [car(1), motorbike(2)}}

At this stage clustering comes into play. The clustering is based on the distance between
two clusters. In this context a cluster is represented as a list of headwords, for e{aamflg,
train(1)]. Overlapping clusters are aggregated into a new cluster. Thus, clusters that contain the
same headwords with the same frequencies are considered to be similar - their distance is zero.
On the other hand, the distance of clusters that do not share any headword is the highest, equal
to 1. The clustering algorithm is very simple and could be briefly described as an examination
of each possible couple of clusters, aggregating those pairs that are the most similar(a threshold
value is used for distance pruning) and repeating the same step over and over again until it is not
able to aggregate any pair anymore. It is important to understand that aggregated are the head-
words of two clusters (no frames). For exampgtar(1), train(1)] and [car(1), motorbike(2)]
might be aggregated to form new cluster calhedtorized vehicle8After the aggregation, the
new cluster is propagated through all the synthetic frames, meaning that every occurrence of
[car(1), train(1)] and [car(1), motorbike(2)]will be replaced withmotorized vehicleAt this
stage, a user is asked to accept or reject the aggregation to be propagated. For instance aggre-
gation might yield new clustefcar(1), train(1), bike(1), motorbike(2)] While this cluster is
certainly good for a frameto travet>, it is no good for<to drive> since everyone knows that
a bike is not drivable because it is not a motorized vehicle.

In this description a concept/class of a building ontology is a cluster. Therefore at each level
of clustering new classes are introduced. One can observe that clustering, which at each level
creates only pairs, might lead to enormous number of useless classes. Asium has however a
post-processing phase in which it removes all useless classes. This approach might be a big
help in ontology construction in a narrow specific domain but it might not be very useful in
a general one. In case of a frame such<ds present-, <to give> or <to perform> the
set of headwords might differ resulting in the user being asked to accept or reject too many
aggregations that he will be rejecting.

4.9.3.3 Automatic Ontology Derivation From Text (Khan, Luo and Yen, 2002)

Khan, Luo and Yerij(] describe a system which is based on simple clustering of documents
based on modified self-organizing maps (SOM)[with the extension of topic tracking. The
system is then capable of clustering documents and labeling clusters. It also uses \Woejinet|

a general ontology lexicon database, as a tool for labeling.

According to their method ontologies are constructed automatically in bottom up fashion.
For this, a hierarchy is constructed using some clustering algorithms. Recall that if documents
are similar to each other in content they will be associated with the same concept in ontology.
In the next step, a concept for each node in the hierarchy is assigned. For this, two types of
strategy are deployed and a bottom up concept assignment mechanism is adopted. First, for
each cluster consisting of a set of documents, a topic is assigned based on a modified Roccchio
algorithm for topic tracking{1]. However, if multiple concepts are candidate for a topic, an
intelligent method for arbitration is proposed.
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Next, to assign a concept to an interior node in the hierarchy, WordNet, the aforementioned
linguist ontology is used. Descendant concepts of the internal node will also be identified in
WordNet. From these identified concepts and their hypernyms a more generic concept can be
identified that can be assigned as a concept for the interior node.

With regard to hierarchy construction, the automatic ontology construction is based on a
self-organizing tree which builds a hierarchy from top to bottom. To achieve this a new hier-
archical, growing self-organizing tree algorithm (HGSOT), and a modified self organizing tree
(MSQT) algorithm are proposed. Both algorithms construct hierarchy with better precision and
recall than a hierarchical agglomerative clustering algorithm.

4.9.3.4 ADMI 2001

This is a Bowie State University project](] in accomplice with University of Maryland, Bal-
timore County, and the National Security Agency, who are the sponsors for this project. This
system constructs a domain specific ontology from text documents, presented to it as a training
set[L34]. The documents are read, processed, and a graph-structured ontology is produced. This
ontological structure can be viewed and modified with graphical user interface (GUI).

In the process of achieving this goal, contemporary statistical methods of information re-
trieval such as Boolean, extended Boolean and vector space approaches have beead3tudied|
Of all these approaches vector space approach has been found to be the most efficient method.
It describes each document as a set of terms. This set defines the document space such that each
distinct term represents one dimension in that spac@] Each document in document space
is defined by the weights, or in other words frequencies, of the terms that represent it.

Another vector space approach called Latent Semantic Indexing d/g8ftempts to catch
term-term statistical references by replacing the document space with lower-dimensional con-
cept space. LS| accomplishes this by using Singular Value Decomposition (SVD), a method of
matrix decomposition. The effectiveness of SVD as compared to other techniques is described
in[60)].

The research team of this project is concentrated on statistical analysis methods, as com-
pared to heuristic and rule based methods because of their simplicity and because these methods
are based on fairly precise mathematical foundation.

4.9.3.5 Auto-Induced Semantic Classes

Another interesting statistical approach, although its final purpose is not an ontology derivation,
was performed by Pargellis, Fosler-Lussier, Lee, Potamianos, Tshi[They use an unsuper-
vised training approach consisting of two complementary procedures. First, they use n-gram
statistics to determine the similarity of words and more generally, phrases, by looking at their
bigram lexical contexts within a single domain. According to their research, they compared
four different similarity metrics[16, s , 117] in order to accomplish auto-inducement of
semantic classes. These metrics are the Kullback-Leibler distance, the Information-Radius dis-
tance, the Manhattan-Norm distance, and the Vector-Pradiuit 6, 22, 33, 105. Phrases that
are determined to be the most similar are grouped into the same semantic class (or, concept).
Next, they go a step further by ranking the degree of domain independence for various con-
cept groups across pairs of domains in order to validate the process of using concepts across
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domains. Those semantic groups that are considered domain independent will be ported across
domains and used to bootstrap the understanding module for a new, untested, domain. The abil-
ity to automatically induce a concept in one domain and port it to a new domain for which little
training data is available could be a powerful tool, aiding developers in building new speech ser-
vices. Semantic classes, developed for well-studied domains, could be used for a new domain
with little modification. By identifying task-independent versus task-dependent concepts with
this methodology, a system developer can import data from other domains to fill out the set of
task-independent phrases, while focusing efforts on completely specifying the task-dependent
categories manually. They hypothesize that domain-independent semantic classes (concepts)
should occur in similar syntactic (lexical) contexts across domaiihshe methodology pro-

posed ranks orders concepts by degree of domain independence which is achieved by using two
metrics, the concept-comparison and concept-projection metric.

They propose an iterative procedure for automatically inducing semantic classes, consisting
of three main components: a lexical phraser, a semantic generalizer, and a corpus reparser. First,
the lexical phraser groups words in a single lexical unit. Next, a semantic generalizer generates
rules that map words (and concepts) to concepts. Finally, a corpus parser re-parses the corpus
using the rules generated from the semantic generalizer.

4.9.3.6 Related Work

There is a large body of literature in the area of ontology definition, ontology markup languages,
manual and semi-automatic ontology creation. In the semantic web and web applications lit-
erature in general, there can be found a large number of papers on the computation of the se-
mantic distance between words, phrases and concepts,le.q, With application to improved

web searches and web search result presentation’Z]n gntologies are constructed semi-
automatically using techniques from4{7 and applied to word-sense disambiguation. I,

the authors provide techniques for finding associations between two taxonomies, i.e., mapping
between semantic classes. Similar work on how to compute distance between concepts and
how to merge ontologies (in the same or different languages) can be fougid ir’[]. Finally,

efforts to manually or semi-automatically create ontologies to use in NLP applications can be
found in [34, 21, 40)].

4.9.3.7 Future Research Directions

The problem of automatic ontology constructions is a hard and very diverse one. The type
of ontology that one needs to construct depends very much on the application. For example,
the Sensus ontology3{] has been developed specifically for machine translation and merges
information from various sources including WordNét], dictionaries, semantic categories and
other ontologies. Creating complex ontologies from text is a very hard and futuristic goal at this
point. Instead, we will focus our work in the simplest of ontologies a taxonomy, i.e., a tree
ontology with only the ‘is-a’ relationship. Semantic taxonomies are simple yet powerful tools
for many natural language processing (NLP) applications.

Traditional NLP techniques for determining semantic similarity between words and identi-
fying ‘is-a’ relationships, include bag-of-word techniques and lexico-syntactic features as pre-
sented above. We will work on combining these techniques to automatically create taxonomies.
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There are a lot of practical issues when building systems that automatically extract taxonomies
from text. These include the design and stopping criteria for the chunk parser and the seman-
tic generalizer, the semantic similarity measures (could be different at different levels of the
taxonomy) and the evaluation of the results.

Automatic taxonomy creation using unsupervised machine learning algorithms is a chal-
lenging and important research area with many applications to web and NLP applications. Re-
search in the area of automatic ontology creation can prove valuable especially for minority
languages where few resources exists to manually create such ontologies.
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Chapter 5

Semi-supervised Learning

5.1 Semi-supervised Clustering

In addition to the similarity information used by unsupervised clustering, in many cases a small
amount of knowledge is available concerning either pairwise (must-link or cannot-link) con-
straints between data items or class labels for some items. Instead of simply using this knowl-
edge for the external validation of the results of clustering, one can imagine letting it “guide”
or “adjust” the clustering process, i.e. provide a limited form of supervision. The resulting
approach is calledemi-supervised clusteringVe also consider that the available knowledge
is too far from being representative of a target classification of the items, so that supervised
learning is not possible, even in a transductive form.

Note that class labels can always be translated into pairwise constraints for the labeled data
items and, reciprocally, by using consistent pairwise constraints for some items one can obtain
groups of items that should belong to a same cluster.

5.1.1 A Typology of Methods

Two sources of information are usually available to a semi-supervised clustering method: the
similarity measure unsupervised clustering would employ and some pairwise constraints (must-
link or cannot-link). For semi-supervised clustering to be profitable, these two sources of infor-
mation should not completely contradict each other.

Unlike traditional clustering, the semi-supervised approach to clustering has a short history
and few methods were published until now. The main distinction between these methods con-
cerns the way the two sources of information are combined: either by adapting the similarity
measure or by modifying the search for appropriate clusters.

¢ In similarity-adaptingmethods, an existing clustering algorithm using some similarity
measure is employed, but the similarity measure is adapted so that the available con-
straints can be easier satisfied. Several similarity measures were employed for similarity-
adapting semi-supervised clustering: the Jensen-Shannon divergence trained with gra-
dient descentd], the Euclidean distance modified by a shortest-path algoritinorf
Mahalanobis distances adjusted by convex optimizatidf [2]. Among the clustering
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algorithms using such adapted similarity measures we can mention hierarchical single-
link [ 2] or complete-link [/] clustering and k-means.[], [Z].

¢ In search-basedhethods, the clustering algorithm itself is modified so that user-provided
constraints or labels can be used to bias the search for an appropriate clustering. This can
be done in several ways, such as by performing a transitive closure of the constraints and
using them to initialize cluster<], by including in the cost function a penalty for lack of
compliance with the specified constraini$, [or by requiring constraints to be satisfied
during cluster assignment in the clustering procésk [

5.1.2 Introduction

Gaussian mixture model approach is a flexible statistical approach to model complex and in-
homogeneous categoried.[ Let us consider that observations of classave the following
density:

Re
fc(X) — P(X — X|Y - C) — z Tl'chcr(X; “CI')ZCI')
r=1

where the mixing proportiong,; sum to one@c, is a Gaussian distribution, apgr and>¢, are
the class center and the covariance matrix respectively.

We are now give an example of these general Gaussian mixture models for CBIR applica-
tion. Image indexes are supposed to be generated from a Gaussian mixtuRcaiitiponents.
Interactive image retrieval is characterized by a small number of labeled observations (images).
However, the mixture model approach does not seem adapted because it requires many parame-
ter estimation. Using few observations to estimate many parameters leads at least to non robust
estimation. Considering diagonal covariance matrix allows to reduce the number of parameters
to be estimated and increases the estimation robustness. To handle with multi-modal categories
of relevant images (clag3;) and a heterogeneous claSs of irrelevant images, both classes
are represented by a mixture Rf andR, Gaussian components respectively. To simplify the
problem formulation, we notg, () the Gaussian density of the mixture componenthus the
probability density of vectox; is:

Ry Ri+R2
g(xi|®) = > Tegr(i[6r) + Z T, gr (%i[6r) (5.1)
r=1 r=R;+1

wherert, is the proportion of component, (0< 14 < 1 ander:lTrr =1).d=(my,...,TR,01,...,0R)
is the parameter vector to be estimated.

The mixture parameters can be estimated by maximizing the likelihood knowing the indexes
and their labels. The classical and natural method for computing the maximum-likelihood esti-
mates for mixture distributions is the EM algorithi.[

5.1.3 Semi-supervised mixture model

In addition to mixture modeling, using all the data of the database (for instance, labeled and
unlabeled images in CBIR) as training set is also helpful to obtain robust estimé}ionhis
approach lies within the semi-supervised learning framewdrk [
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The adaptation of the previous approach is simple and is based on the introduction of anno-
tation vectors; € {0,1}Ri+R2 which are coded as follows:

e zi=(1,...,1,0,...,0), for x; labeledrelevant,
—— ——
Rp times Ry times

e z=(0,...,0,1,...,1), for x; labeledirrelevant,
—— ——
Ry times Ry times

e zi=(1...,1)if xisunlabeled
——
R1+Ry times

The posterior probability thag belongs to clas€; is given by:

Ry Ry . .
Zir T Or (Xi(6r )
P(xi € C1|xi,z;P) = p(r|xi,zi; @) = (5.2)
| " rzl " r=1 zilzisnsgs(xﬂes)

The mixture parameter estimation, at each iteragjomay be expressed in that case as follows:
e E-step: for each componenand each image;, compute

ze 14V g (x:|61Y)
SR, zim P g (xi(6Y)

¥ = p(r|x;, z; D) =

Ir

e M-step: Compute the parameteps™1), which maximize

Q¥ ZZ 9 ogTegr (xi/6r)

Finally, the images are returned to the user by descending order of:

P(xi € C1|xi,z; P)
f(xi) =
(xi) P(xi € Ca|xi,zi; P)

This kind of strategy has been successfully applied in CBIR for medical imagery applica-
tions [3], and may be compared to transductive SVM strategies.
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Chapter 6

Active learning

6.1 Introduction

Learning is a process where an agent uses a set of experiences to improve its problem solving ca-
pabilities. In thepassive learningnodel, the learner passively receives a srteam of experiences
and processes them. In thetive learningmodel the learner has some control over its training
experiences. Markovitch and Scott] define the information filtering framework which spec-
ifies five types of selection mechanisms that a learning system can employ to increase the utility
of the learning process. Active learning can be viewed in this modskstive experience
filter.

Why should a learner be active? There are two major reasons for employing experience
selection mechanisms:

1. If some experiences have negative utility — the quality of learning would have been bet-
ter without them — then it is obviously desirable to filter them out. For example, noisy
examples are usually harmful.

2. Even when all the experiences are of positive utility, there is a need to be selective or
to have control over the order in which they are processed. This is because the learning
agent has bounded training resources which should be managed carefully.

In passivdearning systems, these problems are either ignored, leading to inefficient learn-
ing, or are solved by relying on a human teacher to select informative training experiefices [

It may sometimes be advantageous for a system to select its own training experiences even when
an external teacher is available. Scott & Markovitehi][argue that a learning system has an
advantage over an external teacher in selecting informative examples because, unlike a teacher,
it can directly access its own knowledge base. This is important because the utility of a training
experience depends upon the current state of the knowledge base.

In this summary we concentrate on active learning for supervised concept induction. Most
of the works in this area assume that there are high costs associated with tagging examples.
Consider, for example, training a classifier for a character recognition problem. In this case, the
character images are easily available, while their classification is a costly process requiring a
human operator.
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In the following subsections we differentiate between pool-based selective sampling and
example construction approaches, define a formal framework for selective sampling algorithms
and present various approaches for solving the problem.

6.2 The Source of the Examples

One characteristic in which active learning algorithms vary is the source of input examples.
Some algorithmsonstructinput examples, while otheeelectfrom a pool or a stream of unla-
beled examples.

6.2.1 Example Construction

Active learning by example construction was formalized and theoretically studied by Angjluin [
Angluin developed a model which allows the learner to ask two types of quenesmdership
guery, where the learner selects an instanaad is told its membership in the target concept,
f(x); and anequivalencequery, where the learner presents a hypothesisd either told that

h= f, or is given a counterexample. Many polynomial time algorithms based on Anguin’s
model have been presented for learning target classes such as Horn seripaoesmul-
tivariate polynomials {]. In each case, a domain-specific query construction algorithm was
presented.

In practical experiments with example construction, there are algorithms that try to optimize
an objective function like information gain or generalization error, and derive expressions for
optimal queries in certain domains:(, 31]. Other algorithms find classification borders and
regions in the input space and construct queries near the botgers.[

A major drawback of query construction was shown by Baum and LadagnfVhen trying
to apply a query construction method to the domain of images of handwritten characters, many
of the images constructed by the algorithm did not contain any recognizable characters. This is
a problem in many real-world domains.

6.2.2 Selective Sampling

Selective sampling avoids the problem described above by assuming that a pool of unlabeled
examples is available. Most algorithms work iteratively by evaluating the unlabeled examples
and select one for labeling. Alternatively it is assumed that the algorithms receives a stream of
unlabeled examples, and for each example a decision is made (according to some evaluation
criteria) whether to query for a label or not.

The first approach can be formalized as follows. Kdie aninstance spacea set of objects
described by a finite collection of attributefedture3. Let f : X — {0,1} be ateacher(also
called an expert) that labels instances as 0 or Isupervised) learning algorithrrakes a set
of labeled exampleq (x1, f(X1)),..., (Xn, f(Xn)) }, and returns &ypothesis h X — {0,1}. Let
X C X be anunlabeled training setLet D = {(X;, f(x)) : X € X,i = 1,....n} be thetraining
data— a set of labeled examples fraxh A selective sampling algorithi§_, specified relative
to a learning algorithnh, receivesX andD as input and returns an unlabeled elemerX of
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Active Learner(X,f()):
1. D 0.
2. h—L(0).

3. While stopping-criterion is not satisfied do:

a) x<— S (X,D) ; Apply S_ and get the next example
b) w f(x) ; Ask the teacher to label

c) D—DU{(x,w)} ; Update the labeled examples.set
d) h—L(D) ; Update the classifier

4. Return classifieh.

Figure 6.1: Active learning with selective sampling. Active Learner is defined by specifying
stopping criterion, learning algorithinand selective sampling algorith&. It then works with
unlabeled datX and teachef () as input.

The process of learning with selective sampling can be described as an iterative procedure
where at each iteration the selective sampling procedure is called to obtain an unlabeled example
and the teacher is called to label that example. The labeled example is added to the set of
currently available labeled examples and the updated set is given to the learning procedure,
which induces a new classifier. This sequence repeats until some stopping criterion is satisfied.
This criterion may be a resource bouiMl,on the number of examples that the teacher is willing
to label, or a lower bound on the desired class accuracy. Adopting the first stopping criterion,
the goal of the selective sampling algorithm is to produce a sequence of Mngttich leads
to a best classifier according to some given measure.

The pseudo code for an active learning system that uses selective sampling is shown in
Figure6.1

6.3 Example Evaluation and Selection

Active learning algorithms that perform selective sampling differ from each other by the way
they select the next example for labeling. In this section we present some common approaches
to this problem.

6.3.1 Uncertainty-based Sampling

Most of the works in active learning select untagged examples that the learner is most uncertain
about. Lewis and Gal€e.[] present a probabilistic classifier for text classification. They assume
that a large pool of unclassified text documents is available. The probabilistic classifier assigns
tag probabilities to text documents based on already labeled documents. At each iteration, sev-
eral unlabeled examples that were assigned probabilities closest to 0.5 are selected for labeling.
It is shown that the method significantly reduces that amount of labeled data needed to achieve
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a certain level of accuracy, compared to random sampling. Later, Lewis and C&ijets¢d an
efficient probabilistic classifier to select examples for training another (C4.5) classifier. Again,
examples with probabilities closest to 0.5 were chosen.

Special uncertainty sampling methods were developed for specific classifiers2 farkds
sampling-at-the-boundary method to choose support vectors for SVM classifier. Orthogonal
support vectors are chosen from the boundary hyperplane and queried one at a time. Tong and
Koller [34] also perform pool-based active learning of SVMs. Each new query is supposed to
split the current version space into two parts as equal as possible. The authors suggest three
methods of choosing the next example based on this principle. Hasenjager &R]teanfl
Lindenbaum et. all9] present selective sampling algorithms for nearest neighbor classifiers.

6.3.2 Committee-based sampling

Query By Committee (QBC) is a general uncertainty-based method where a committee of hy-
potheses consistent with the labeled data is specified and an unlabeled example on which the
committee members most disagree is chosen. Seung, Oper and Sompdiitiskye Gibbs
algorithm to choose random hypotheses from the version space for the committee, and choose
an example on which the disagreement between the committee members is the biggest. Appli-
cation of the method is shown on the high-low game and perceptron learning. Later, Freund et.
al. [10] presented a more complete and general analysis of query by committee, and show that
the method guarantees rapid decrease in prediction error for the perceptron algorithm.

Cohn et. al. §] present the concept of uncertainty regions - the regions on which hypotheses
that are consistent with the labeled data might disagree. Although it is difficult to exactly
calculate there regions, one can use approximations (larger or smaller regions). The authors
show an application of the method to neural networks - two networks are trained on the labeled
example set, one is the most general network, and the other is the most specific network. When
examining an unlabeled example, if the two networks disagree on the example, the true label is
queried.

Krogh and Vedelsby14] show the connection between the generalization error of a com-
mittee of neural networks and its ambiguity. The larger is the ambiguity, the smaller is the error.
The authors build an ambiguous network ensemble by cross validation and calculate optimal
weights for ensemble members. The ensemble can be used for active learning purposes - the
example chosen for labeling is the one that leads to the largest ambiguity. Raychandhuri et.
al. [26] use the same principle and analyze the results with an emphasize on minimizing data
gathering. Hasenjager and Rittér’] compare the theoretical optimum (maximization of in-
formation gain) of the high-low game with the performance of QBC approach. It is shown that
QBC results rapidly approach the optimal theoretical results.

In some cases, especially in the presence of noise, it is impossible to find hypotheses con-
sistent with the labeled data. Abe and Mamitsuldesjuggest to use QBC with combination of
boosting or bagging. Liere and Tadepaili] use a small committee of 7 Winnow classifiers
for text categorization. Engelson and Dagdhdvercome the problem of finding consistent
hypotheses by generating a set of classifiers according to the posterior distribution of the pa-
rameters. The authors show how to do that for binomial and multinomial parameters. This
method is only applicable when it is possible to estimate a posterior distribution over the model
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space given the training data. Muslea et. a] present an active learning scheme for problems
with several redundant views — each committee member is based on one of the problem views.

Park et. al. 5] combine active learning with using unlabeled examples for induction. They
train a committee on an initial training set. At each iteration, the algorithm predicts the label
of an unlabeled example. If prediction disagreement among committee members is below a
threshold, the label is considered to be the true label and committee members weights are up-
dated according to their prediction. If disagreement is high, the algorithm queries the oracle
(expert) for the true label. Baram et. &] use a committee of known-to-be-good active learn-
ing algorithms. The committee is then used to select the next query. At each stage, the best
performing algorithm in the committee is traced, and committee members weights are updated
accordingly.

Melville and Mooney P 1] use artificially created examples to construct highly diverse com-
mittees. Artificial examples are created based on the training set feature distribution, and labeled
with the least probable label. A new classifier is built using the new training set, and if it does
not increase the committee error, it is added to the committee.

6.3.3 Clustering

Recently, several works suggest performing pre-clustering of the instance pool before selecting
an example for labeling. The motivation is that grouping similar examples may help to decide
which example will be useful when labeled. Engelbrecht et. Glicluster the unlabeled data

and then perform selective sampling in each of the clusters. Nguyen €i=lgbrg-cluster the
unlabeled data and give priority to examples that are close to classification boundary and are
representatives of dense clusters.

Soderland 79 incorporates active learning in an information extraction rules learning sys-
tem. The system maintains a group of learned rules. In order to choose the next example for
label, all unlabeled examples are divided to three categories - examples covered by rules, near
misses, and examples not covered by any rule. Examples for labele are sampled randomly from
these groups (proportions are selected by the user).

6.3.4 Utility-Based Sampling

Fujii et. al. [L1] have observed that considering only example uncertainty is not sufficient when
selecting the next example for label, and that the impact of example labeling on other ulabeled
examples should also be taken into account. Therefore, example utility is measured by the sum
of interpretation certainty differences for all unlabeled examples, averaged with the examined
example interpretation probabilities. The method was tested on the word sense disambiguation
domain, and showed to perform better than other sampling methods.

Lindenbaum et. al.l[9] present a very general utility-based sampling method. The sampling
process is viewed as a game where the learner actions are the possible instances and the teacher
reactions are the different labels. The sampling algorithm expands a “game” tree of depth
k, wherek depends on the resources available. This tree contains all the possible sampling
sequences of length The utility of each leaf is computed by evaluating the classifier resulting
from performing induction on the sequence leading to that leaf. The arcs associated with the
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teacher’s reactions are assigned probabilities using a random field model. The example selected
is the one with the highest expected utility.

6.4 Conclusion

Active learning is a powerful tool. It has been shown to be efficient in reducing the number of
labeled examples needed to perform learning, thus reducing the cost of creating training sets.
It has been successfully applied to many problem domains, and is potentially applicable to any
task involving learning. Active learning was applied to numerous domains such as function
approximation {4], speech recognitior3f], recommender systenif], text classification and
categorization I7, 34, 18, 33, 37], part of speech tagging!], image classification47] and

word sense disambiguationl, 25].
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Chapter 7

Dimension Reduction

7.1 Introduction

There are two commonly used techniques in machine learning for reducing the dimensionality
of a dataset:

e Feature extraction: Feature extraction (or Feature Transformation)is a pre-processing
technique that transforms the original features of a data set to a smaller, more compact
feature set, while retaining as much information as possible. The most popular approach
to feature extraction involves the applicationRrincipal Component AnalysiPCA),

a multivariate analysis procedure that projects data onto a reduced set of dimensions by
producing a new set of orthogonal axes, where each is a linear combination of the orig-
inal features. A variation of this techniqueatent Semantic Indexin@.Sl), has been
commonly employed in information retrieval scenarios.

While feature extraction methods can often be effective in reducing dimensionality, they
are generally not appropriate for knowledge discovery tasks, as the transformed features
have no intuitive meaning to the user, making clusters formed in the new space difficult
to interpret.

e Feature selectionFeature selection is concerned with locating a minimum subset of the
original features that optimises one or more criteria, rather than producing an entirely new
set of dimensions for the data. For cluster analysis, this involves the identification of a
subset of features that best reveals the “natural” groupings of instances in the data.

As with feature extraction, the economy of representation afforded by the use of a reduced
number of features can lead to improved computational efficiency. However, in contrast
to transformation-based techniques, a subset of the original dimensions is chosen, thus
ensuring that each feature has a real meaning for the user. Due to the importance of
interpretability in knowledge discovery, this survey focuses on these techniques.
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7.2 Feature Transformation Techniques

The most commonly used technique for compression of training images is bageaa@pal
component analysi@PCA) [63]. An image is considered to be a vector in high-dimensional
space of all possible images. The basic idea of PCA is to efficiently map high-dimensional
input data to a low-dimensional subspace by reducing the redundancy and preserving as much
information as possible. To achieve this goal, the directions with the largest variance of input
data are found in the high-dimensional input space. The dimension of the space can be reduced
by discarding the directions with small variance of the input data. By projecting the input
data into this subspace, which has the principal directions for the basis vectors, we obtain an
approximation with an error, which is minimal (in the least squares sense) among all linear
transformations to a subspace of the same dimension.

Thus, learning is performed by estimating éncipal directionsconsidering all training
images. Since these directions are usually obtained using the eigendecomposition, they are
commonly referred to also adgenvectors An object is represented with the projections of
the training images into tharincipal subspac¢eigenspacedetermined by the principal direc-
tions. It turns out that the correlation between two images can be approximated by the distance
between their projections in the principal subspace. Thus, the recognition can be carried out by
projecting an image of an unknown object into the principal subspace and finding the nearest
projected training image.].

First of all, the representation is easy to build. Well known statistical and algebraic methods
for principal component analysis can be employed. It is very effective in terms of compression,
since it requires an amount of memory as small as possible to represent input images to a cer-
tain degree of accuracy. Next, by interpolating between the projected points in the principal
subspace, training images can be generalized to unfamiliar views as well. And lastly, the recog-
nition can be performed very quickly, since it is reduced to the search for the closest point in a
low-dimensional principal subspace.

Nevertheless, PCA is not the only subspace method that can be used to map high-dimensional
images to a low-dimensional subspace. There exist several other techniques, each with its own
properties and goal applications. In the next subsection we will briefly outline some of them.

7.2.1 PCA - the Basic Principle

Principal component analysis is a linear transformation from a high-dimensional input space to
a low-dimensional feature space, which among all linear transformations guarantees the best
possible representation of the high-dimensional input vectors in the low-dimensional feature
space. It rotates the coordinate frame in a data-driven way, such that the variability of the input
data can be efficiently described using only a small number of basis vectors.

This principle is illustrated in a simple 2-D example in Figl. Consider eight 2-D points
depicted as black dots. The goal of PCA is to find a new coordinate frame in which these
eight points can be represented using only one basis vector as well as possible. This coordinate
system is depicted with blue lines in Fig.1 and its axes are referred to pancipal axes
(alsoprincipal vectorsor principal directiong. Due to the correlation between the elements
of the input vectors, the first principal axis encompasses most of the variability of the input
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Figure 7.1: Principles of PCA.

points. Thus, by projecting the input points onto the first principal axis we obtaipdrDipal
componentsvhich are the best possible 1-D representations of the input points. The principal
components (also referred to @sefficientyare depicted as cyan dots in FigL

The principal axes are obtained in such a way that they minimize the squared reconstruction
error between the input points and their representations and they maximize the variance of the
principal components. If we consider Figl, the goal is to rotate the long blue line in a such
direction, which yields the red lines as short as possible and the green lines as long as possible.
It turns out that these two critera, namely the minimization of the reconstruction error and the
maximization of the variance, are equivalent and can be uniquely satisfied using PCA.

PCA produces very good results, if the high-dimensional input vectors are correlated. This
means that they contain redundant information. PCA removes the redundancy by decorrelating
the input vectors; the new coordinates of the input vectors (principal components) are uncor-
related. As a consequence, the correlated high-dimensional input vectors can be efficiently
represented as the uncorrelated low-dimensional vectors of principal components making PCA
a very powerful tool for data compression.

7.2.2 PCA -the Detalils

Principal Component Analysis (PCA), also known as the (discrete) Karhunen-Loeve or the
Hotelling transform, is one of the most popular tools for dimensionality reduction of multi-
variate data points. It originated from Pearséri][as a methodology for fitting planes in the
least-squares sense (linear regression), and it was Hotelling (33®)Ho proposed this tech-
nigue for the purpose of analyzing the correlation structure between many random variables.

It is applied in many areas such as image analysis, pattern recognition, compression and
for applications such as faces recognition, recognition@®fo®jects under varying pose and
tracking of deformable objects. These applications require a robust feature extraction method
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that is capable of deriving low-dimensional features effective for preserving class separability.

Such low dimensional features are also important when one considers the computational effi-
ciency. Principal Component Analysis (PCA), a second-order method, is capable of deriving

uncorrelated components and is commonly used for deriving low-dimensional representation of
input images.

Why is dimensionality reduction an important issue in these fields ? First, the storage,
transmission and processing of high dimensional data places great demands on computational
systems. Second, with high dimensional data, it is difficult to understand the underlying struc-
ture. This is related to what is known as the "curse of dimensionalify Thus, not only that
an increase in the number of features does not improve representation or segmentation results, it
actually deteriorates them. High dimensional spaces are inherently sparse, thus a major portion
of the observed data has a low variance estimator. Moreover, psychophysical findings indicate
that "perceptual” tasks such as similarity judgment tend to be performed on a low-dimensional
representation of the sensory data. Thus, the motivation for PCA is to reduce the dimensionality
of the original data, while maintaining its original structure.

PCA assumes that important structure in the data actually lies in a much smaller dimen-
sional space, and that the dimensionality reduction method loses as little relevant information
as possible in the transformation from high-dimensional space to the low-dimensional one.

PCA can be understood as a fitting to a Gaussian model and choosing the uncorrelated vari-
ables with the large variance as the relevant features. Suppose that we measure d-dimensional
vectors. Given N such vectors we assume a Gaussian probability distribution:

N N1 1 1
POz =[P =TT gy expl—5 06 W' - W}
i= i—1 (2m)2 (detx)? 2
By the maximum likelihood procedure we find the well known resuljiss the arithmetic
average and is the covariance matrix.

The PCA procedure diagonalizes the covariance matrix and de-correlates the feature chan-
nels. Since the covariance matrix is a non-negative, symmetric matrix it can be diagonalized
with an orthogonal transformation L. The multi-variate normal distribution reads

P = [y
’ H(zn)‘%(detLTZL)%

expl— (}LT) (L3 LT (L%))

wherex; = x; — .. Let us denote the diagonalized covariance matridby L'ZL then
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HereX; = LX = L(x — M) are the decorrelated variables with variance which is given by the
diagonal ofA. We arrange\ such that the eigenvalues are sorted from higher to lower values.
If the lower eigenvalues are very small it means that the corresponding random vaxiakes ~
all very close to the average and that this feature is not discriminative and doesn't carry useful
information about the distribution and can be discarded in the analysis.

From this perspective the PCA can be viewed as some projection of the observations onto
orthogonal axes in the space defined by the original variables. When the observed variables
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Figure 7.2: A two dimensional data set in axes (x1,x2) is transformed to its uncorrelated princi-
pal components (y1,y2). Note the the principal components are aligned with the principal axes
of the ellipse shaped data set

have a non-zero correlation, the dimensionality of the data space does not represent the number
of independent variables that are really needed to describe the data. The more correlated the ob-
served variables, the smaller the number of independent variables that can adequately describe
them. The criteria for obtaining the principal components is that the first axis "contains” the
maximum amount of variation in the original variables. The second axis contains the maximum
amount of variation orthogonal to the first. The third axis contains the maximum amount of
variation orthogonal to both the first and second axis, and so on until one has the last new axis
which is the amount of variation left. Figuié2 demonstrates a transformation from a two
dimensional data set in axes (x1,x2), to its uncorrelated principal components (y1,y2).

Usually, following PCA, the data dimension reduction process involves considering for ex-
ample only the first component which encompasses the largest variance of the original data.
The original information is actually projected on a lower dimension space so that as little infor-
mation as possible is lost in a mean-square sense.

PCA can also be described using matrix methods. Suppose that we have observations
of N variablesx, wherex' = x,x,...,x;, i = 1,...,N. We would like to find new variables
y,i=1..N wherey =y,,y,,....yy which are linear combinations of thés but are un-
correlated, thus:y = Lx and L is the matrix representing this linear transformation. The
transformation is imposed to be self-orthogordl| = I, wherel is the identity matrix. It
follows that once the principal components are obtained, the original variables can be repro-
duced by:X = LTY. The constraint of de-correlatio,yiy;) = 0 is equivalent toE(YYT) =
E(LX(LX)T) = E(LXXTLT) = LALT where we require that the matix\L" is with zero off
diagonal elements and with diagonal elements. Ay representing the variances of this. A
is the covariance matrix of the original variablsnd the goal is to find the eigenvectors of the
covariance matrix. These eigenvectors correspond to the directions of the principal components
of the original data, and and their statistical significance is given by their corresponding eigen-
values. The transformation matrixis then built using the eigenvectors as its columns. This
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Figure 7.3: These examples cannot be modelled by a Gaussian distribution, therefore an im-
provement to the PCA method is required.

technique can be described as follows:
1. Collectx; of ad — dimensionadata sei, i =1,2,...N.
2. Calculate the meaxiand subtract it from each data point:— x.

3. Calculate the variance-covariance maikix
Aij = (% = X)(xj = X)

4. Determine the eigenvectors and eigenvalues of the mAtrixrhus, solve:Aa = Aq,
whereA is the eigenvalue andl is an eigenvector.

5. The transformation matrik is now constructed using the eigenvectors obtained, as its
columns.

6. The next step involves sorting the eigenvectors and then select the first eigenvectors which
correspond to the largest eigenvalues.

The featurey;,...,yn, are called the principal components of y. They are statistically un-
correlatedE(yjyj) = 0, and their variances are equal to the eigenvalues calculatgd) = \;.

If the Gaussian model is valid, thus the higher order moments are not significant, then PCA
is an excellent choice as it is easy to implement and provides good results. However, if the basic
assumption that the data can be well described by a Gaussian model is violated, then PCA may
yield poor results. See Fig..3for examples of data sets for which PCA cannot be used as the
Gaussian model is not valid. In such cases other methods which account for the higher order
moments are needed, such as non-linear PCA which extend the ability of PCA to incorporate
non-linear relationships in the dataf] and Independent Component Analysis, which derives
independent components by means of high order statistic$. [

7.2.2.1 Principal Component Analysis Applied to Image Analysis

Applying PCA technique to face recognition, Turk and Pentland] developed a well-known
Eigenfaces method, where the eigenfaces correspond to the eigenvectors associated with the
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largest eigenvalues of the face covariance matrix. The eigenfaces thus define a feature space,
or “face space”, which drastically reduces the dimensionality of the original space, and face
recognition is then carried out in the reduced space.

In the work of Rousson and Deriché(] a variational framework that extends the work
of Chan, Sandberg and Ves2/]] is presented where the energy functional to be minimized
accounts for the deviation of the attributes from a mean value, and the covariance relationship
between the attributes. The density function which describes the image data is a Gaussian
distribution, so that the conditional probability with respect to the hypothesisrified in a
regionQ;j is:
1w, (7.1)
(2m) 2 (detz;)z

wherel is image datay; is the mean value in the regid®y andz; is the variance-covariance
matrix between the image features involved in the redipn In such application, it seems
natural to perform PCA using the variance-covariance matrix already presented to extract the
most dominant features in each region.

The most straight forwards need for the application of PCA to the Gabor feature space is
dimensionality reduction. Usually, Gabor filters are generated for several scales and orienta-
tions. Even a solid choice of 6 orientations and 5 scales results in values, which are entries
in a 30— dimensionaltexture feature vector. Therefore, each pixel is characterized by a high
dimensional vector. PCA can be applied to the features vectors to compute the eigenvectors and
eigenvalues of the cross-correlation matrix. The eigenvectors are then ordered according to the
value of the corresponding eigenvalues.

Some of the studies which apply PCA to Gabor filters output are as follows: Monadjemi
and Mirmehdi ] examine the covariance matrix of their feature set, and found that the relative
correlation of the high frequency features was greater than the low frequency features suggest-
ing a lack of variance in the high frequency features. Thus, amBnensionalfeature space
was transformed into a new-3dimensionaket using the new features.

To conclude, PCA is a powerful tool which enables data dimensionality reduction, to obtain
the most important attributes of multidimensional data points. The PCA provides good results
when the data can be well described by a a Gaussian model. When the Gaussian assumption is
not valid, the use of PCA may not yield good results and other methods are required. However,
as the Gaussian model is valid for several physical phenomena, PCA is a popular method.
Applying PCA to the Gabor features space may provide a compact presentation of textural
data, as well as generate the most relevant features for texture segmentation.

PZiM =

7.2.3 Applications of PCA
7.2.3.1 Electrical Impedance Tomography

[117] The recent industrial and medical interest is focused on real-time reconstruction. That is
not possible in Electrical Impedance Tomography (EIT) using the classical approach, especially
in 3D space. Therefore, in this paper 3D Boundary Element Method (BEM) for thin layers in
EIT and the solution to the inverse problem using Neural Network is presented.

Thin layers like skull in EIT cause many problems to geometrical representation. Finite El-
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ement Method, which is time-consuming in 3D space, is usually used to the solution of the

forward problem. The BEM, which represents only a discretization of the surface, reduces the
number of necessary elements as a consequence the computation time.

In order to solve the inverse problem, the Neural Network method was applied. For selec-
tion of neural network size, which is the one of more important and complex problems, the

Principal Component Analysis (PCA) is used. PCA decomposes high-dimensional data into a
low-dimensional subspace component. In this way, the size of input vector to train the neural
networks is limited.

7.2.3.2 Application of recirculation neural network and principal component analysis
for face recognition

[17] Bryliuk and Valery Starovoitov described their study of the recirculation neural network
(RNN) for calculation principal components from a large set of face images. They developed
a simple and fast algorithm was used to train RNN. Obtained principal components were used
for face recognition. They also explored the ability of the RNN to reconstruct face images.

7.2.3.3 PCA with Missing Data and its Application to Polyhedral Object Modeling

[106] Observation-based object modeling often requires integration of shape descriptions from
different views. To overcome the problems of errors and their accumulation, the authors have
developed a weighted least-squares (WLS) approach which simultaneously recovers object
shape and transformation among different views without recovering interframe motion. They
showed that object modeling from a range image sequence is a problem of principal component
analysis with missing data (PCAMD), which can be generalized as a WLS minimization prob-
lem. An efficient algorithm is devised. After they have segmented planar surface regions in each
view and tracked them over the image sequence, they construct a normal measurement matrix
of surface normals, and a distance measurement matrix of normal distances to the origin for
all visible regions over the whole sequence of views, respectively. These two matrices, which
have many missing elements due to noise, occlusion, and mismatching, enable them to formu-
late multiple view merging as a combination of two WLS problems. A two-step algorithm is
presented. After surface equations are extracted, spatial connectivity among the surfaces is es-
tablished to enable the polyhedral object model to be constructed. Experiments using synthetic
data and real range images show that the approach is robust against noise and mismatching and
generates accurate polyhedral object models.

7.2.3.4 Linear Subspace Technique for Pattern Classification

In [127] Vaswani presented a linear pattern classification algorithm, Principal Component Null
Space Analysis (PCNSA) which uses only the first and second order statistics of data for clas-
sification and compared its performance with existing linear algorithms. PCNSA first projects
data into the PCA space in order to maximize between class variance and then finds separate
directions for each class in the PCA space along which the class has the least variance (in an
ideal situation the null space of the within class covariance matrix) which is defined as the
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"approximate null space” (ANS) of the class. To obtain the ANS, the authors calculate the co-
variance matrix of the class data in PCA space and find its eigenvectors with least eigenvalues.
The method works on the assumption that an ANS of the within-class covariance matrix exists,
which is true for many classification problems. A query is classified as belonging to the class
for which its distance from the class mean projected along the ANS of the class is a minimum.
Results for PCNSA's superior performance over LDA and PCA were shown for object recogni-
tion.

In [12§ Vashwani and Chelappa discussed the PCNSA algorithm more precisely and derived
tight upper bounds on its classification error probability. They used these expressions to com-
pare classification performance of PCNSA with that of Subspace Linear Discriminant Analysis
(SLDA).

In [129] the authors proposed a practical modification of PCNSA called progressive-PCNSA
that also detects "new” (untrained classes). Finally, they provided a brief experimental compar-
ison of PCNSA, progressive-PCNSA and SLDA for three image classification problems - object
recognition, facial feature matching and face recognition under large pose/expression variation.
They also showed application of PCNSA to two classification problems in video - an abnormal
activity detection problem and an action retrieval problem.

7.2.3.5 High-Resolution Infrared Measurement Compression and Retrieval

[65] A simulation study is used to demonstrate the application of principal component anal-
ysis to both the compression of, and meteorological parameter retrieval from, high-resolution
infrared spectra. The study discusses the fundamental aspects of spectral correlation, distri-
butions, and noise; the correlation between principal components (PCs) and atmospheric-level
temperature and water vapor; and how an optimal subset of PCs is selected so a good com-
pression ratio and high retrieval accuracy are obtained. Principal component analysis, princi-
pal component compression, and principal component regression under certain conditions are
shown to provide 1) nearly full spectral information with little degradation, 2) noise reduc-
tion, 3) data compression with a compression ratio of approximately 15, and 4) tolerable loss
of accuracy in temperature and water vapor retrieval. The techniques will therefore be valu-
able tools for data compression and the accurate retrieval of meteorological parameters from
new-generation satellite instruments.

7.2.3.6 Multisensor classification

[2€] The potential of high-resolution radar and optical imagery for synoptic and timely map-
ping in applications such as resource management, disaster delineation and weather mapping
is well-known. Numerous methods have been developed to process and quantify useful in-
formation from remotely sensed images. Most image processing techniques use texture based
statistics combined with spatial filtering to separate target classes or to infer geophysical param-
eters from pixel radiometric intensities. The use of spatial statistics to enhance the information
content of images, thereby providing better characterization of the underlying geophysical phe-
nomena is a relatively new technique in image processing.

The authors are currently exploring the relationship between spatial statistical parameters of
various geophysical phenomena and those of the remotely sensed image by way of principal
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component analysis of radar and optical images. Issues being here explored are the effects of
incorporating PCA into land cover classification in an attempt to improve its accuracy. Pre-
liminary results of using PCA in comparison with unsupervised land cover classiffcation are
presented.

7.2.3.7 Microarray Experiments

[100] A series of microarray experiments produces observations of differential expression for
thousands of genes across multiple conditions. It is often not clear whether a set of experiments
are measuring fundamentally different gene expression states or are measuring similar states
created through different mechanisms. It is useful, therefore, to define a core set of independent
features for the expression states that allow them to be compared directly. Principal components
analysis is a statistical technique for determining the key variables in a multidimensional data
set that explain the differences in the observations, and can be used to simplify the analysis
and visualization of multidimensional data sets. The authors showed that application of PCA to
expression data (where the experimental conditions are the variables, and the gene expression
measurements are the observations) allows to summarize the ways in which gene responses vary
under different conditions. Examination of the components also provides insight into the un-
derlying factors that are measured in the experiments. The authors applied PCA to the publicly
released yeast sporulation data set (Chu et al. 1998). In that work, 7 different measurements of
gene expression were made over time. PCA on the time-points suggests that much of the ob-
served variability in the experiment can be summarized in just 2 components—i.e. 2 variables
capture most of the information. These components appear to represent (1) overall induction
level and (2) change in induction level over time. The authors also examined the clusters pro-
posed in the original paper, and show how they are manifested in principal component space.
The results are available on the internet at http://www.smi.stanford.edu/projects/helix/PCArray.

7.2.3.8 Blind Multiuser Detection

[51] SIPEX-G is a fast converging, robust, gradient-based PCA algorithm that has been re-
cently proposed by the authors. Its superior performance in synthetic and real data compared
with its benchmark counterparts makes it a viable alternative in applications where subspace
methods are employed. Blind multiuser detection is one such area, where subspace methods,
recently developed by researchers, have proven effective. In this paper, the SIPEX-G algorithm
is presented in detail, convergence proofs are derived, and the performance is demonstrated in
standard subspace problems. These subspace problems include direction of arrival estimation
for incoming signals impinging on a linear array of sensors, non-stationary random process
subspace tracking, and adaptive blind multiuser detection.

7.2.3.9 Material Science

[114] The relationship between apparently disparate sets of data is a critical component of
interpreting materials’ behavior, especially in terms of assessing the impact of the microscopic
characteristics of materials on their macroscopic or engineering behavior. In this paper the
authors demonstrated the value of principal component analysis of property data associated with
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high temperature superconductivity to examine the statistical impact of the materials’ intrinsic
characteristics on high temperature superconducting behavior.

7.2.3.10 Statistics of Shape via PCA on Lie Groups

[91] Principal component analysis has proven to be useful for understanding geometric variabil-
ity in populations of parameterized objects. The statistical framework is well understood when
the parameters of the objects are elements of a Euclidean vector space. This is certainly the case
when the objects are described via landmarks or as a dense collection of boundary points. The
authors have been developing representations of geometry based on the medial axis description
or m-rep. Although this description has proven to be effective, the medial parameters are not
naturally elements of a Euclidean space. In this paper the authors showed that medial descrip-
tions are in fact elements of a Lie group. They developed methodology based on Lie groups for
the statistical analysis of medially-defined anatomical objects.

7.3 Feature Transformation in Image Analysis

In the area of visual processing (image analysis, object recognition, texture classification, tex-
ture segmentation and image retrieval, among others) there are still several fundamental ques-
tions which remain unanswered. One of the core components of any image analysis architecture
is the feature transformation: a mapping from the space of image pixels to a feature space with
better properties for representation and interpretation. An important key question in visual
processing regards the selection of such transformation for the interpretation of the images’
contents. In this manuscript we address this issue in the context of Gabor filtering. Application
of Gabor filtering to image processing is widespread, and we only present here a small portion
of the large amount of studies in this field.

The raw image data can be gray level values on a rectangular grid, which may describe the
intensity of illumination, radiation and even heat. Naturally, image information is not restricted
to a single value per pixel location, e.g. color images. In order to interpret image contents, one
may generate some features which capture or enhance some property of the image. Thus, a
typical image processing algorithm involves a selection of a suitable representation space. This
can naturally be the image itself, but other common choices are windowed Fourier transforms,
the Gabor representatiori(], Wavelet transformsZ5, 77, ], local histograms 115, the
local structure tensop[l] and the space of oscillating functionsj]. Once the representation
space is selected, some features are extracted, e.g the magnitude of the response of the Ga-
bor filters and particular moments which are calculated from local histograrhg4{(]. These
features can be used for image representation, segmentation etc. For example, some measure,
Kulback-Leibler, Mutual information etc., can be introduced on the features. Also, some objec-
tive function can be defined using the image features, and the segmentation, diffusion or other
image processing task can be formulated as an optimization problem.

Image representation and modelling can be roughly divided into two classes: statistical
based approaches and filtering based approaches. Statistical modelling is based on the assump-
tion that each image has unique statistical attributes. Among them are: local statistical features
[27], random field models]9, 57, 67], co-occurence matrices (], second order statistics{],
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statistics of texton attributes’?], local linear transformsi[?4], and a gaussian distribution
modelling of the structure tenscdi]]. The filtering modelling is based on applying some filter
bank to the image and considering the filters’ responses as information about the local behavior
of the image.

An important approach in computer vision is to learn as much as possible from biologi-
cal visual systems. Physiological as well as psychophysical findings indicate that biological
processing is based on local signatures of frequency and orientations. As Gabor functions are
tuned to both orientation and frequency, it is believed that simple cells in the visual cortex
can be modelled by Gabor functionss[ 85], and that the Gabor scheme provides a suitable
representation for visual information in the combined frequency-position spajcéMoreover,
when considering the spatial and frequency spaces, Gabor filters offer the best trade off between
spatial and frequency widths of uncertainty. Indeed, the Gabor representation has been shown
to be optimal in the sense of minimizing the joint two-dimensional uncertainty in the combined
spatial-frequency spacef, 35]. The analysis of Gabor filters was generalized to multi-window
Gabor filters 34 and to Gabor-wavelets’'p, 68, 95, ], and studied both analytically and
experimentally on various classes of images (15, 134]. These attributes have made the use
of Gabor filters widespread in image analysis: the use of Gabor filters for image representation
was studied in the context of the frame theory to ensure the ability to use Gabor functions for
image analysis and synthesis. Gabor filters are also applied to image classification, in areas such
as texture representation and segmentation, affine invariant measures and recognition tasks such
as face detection. It is important to note that for the second type of tasks, it is not required that
the Gabor functions used are a complete set, in the sense that signals can be reproduced.

When applying Gabor filtering methods it is apparent that there is an infinite number of
possible pavings of the spatial-frequency space. One should select the number of spectral com-
ponents for spanning the global frequency bandwidth. The main issues involved in the Gabor
filtering approach are the characterization and number of the channels to be used as well as the
extraction of appropriate features from the filtered images. In appropriate we mean, a feature set
which may lead to a successful representation or segmentation. The selection of the Gaborian
features set can be divided into three phases:

1. The attributes of the Gabor filters used (humber of scales, orientations etc.).
2. The generation of features from the Gabor responses.
3. Using these features to achieve the task in hand, representation, segmentation etc.

The first phase involves obtaining a set of filters with good coverage of the spatial-frequency
domain. The guidelines for this selection are based on physiological findings and on the re-
qguirement that the selected filters constitute a frame. In several applications, these parameters
are selected according to experience, and the common wisdom is that a window which is too
large will make the Gabor feature less representative for the local attributes of the image, and a
window which is too small will result in high sensitivity to noise.

Once the raw Gabor responses are generated, the texture features are calculated. If seg-

mentation is what we are interested in, then the next phase is usually implemented by using
clustering algorithms or PDE based mechanisms, such as active contours (snakes).
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Figure 7.4: In this diagram the responses in the frequency domian of a possible set of Gabor
wavelets is presented. A common design strategy for a Gabor filter bank is to ensure that the
half-peak magnitude support of the filters’ responses in the frequency domain touch each other.

7.4 Gabor Transform

A Gabor filter centered at the 2D frequency coordindte3/) has the general form of:

h(x,y) =g(X,y) exp(2mi (Ux+Vy)) (7.2)
where
(X,y') = (xcoq @) +ysin(@), —xsin(@) + ycog @), (7.3)
2 2
axy) = %@m(—ﬁ—%), (7.4)

andA is the aspect ratio characterizing the elliptic Gaussian window,the scale param-
eter, and the major axis of the Gaussian is oriented at amgative to the x-axis and to the
modulating sinewave gratings.

Accordingly, the Fourier transform of the Gabor function is:

H (u,v) :exp<—2T[202((u’—U’)2)\2+(\/—V/)2)> (7.5)

where,(U,V') and(U’,V’) are rotated frequency coordinates.
Thus,H(U,V) is a bandpass Gaussian with its minor axis oriented at apffiem the u-
axis, and the radial center frequerfeyis defined by :F = (U2 +V?)¥/2, with orientation =

arctarfV /U). Since maximal resolution in orientation is desirable, the filters whose sinewave
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gratings are co-oriented with the major axis of the modulating Gaussian are usually considered
(p=06andA > 1), and the Gabor filter is reduced to:

h(x,y) = g(X,y )exp2miFx’). (7.6)

It is possible to generate Gabor wavelets from a single mother-Gabor-wavelet by transfor-
mations such as: translations, rotations and dilations. We can generate, in this way, a set of
filters for a known number of scales, S, and orientations K:

hmn(x7y) = aimh<_ _)7 (77)

where(xX,y’) are the spatial coordinates rotated Fyand scaled by powers=0,...,S—1.
The responses of Gabor wavelets in the frequency spectrum can be seen if.figure

Alternatively, one can obtain Gabor wavelets by logarithmically distorting the frequency
axis [95] or by incorporating multi-windows[34]. In the latter case one obtains a more general
scheme wherein subsets of the functions constitute either wavelet sets or Gaborian sets.

There are several degrees of freedom in selecting the family of Gabor filters to be used:
number and values of scales, frequencies and orientations. In order to obtain good segmentation
results, the filters should be carefully selected, so that they represent the data and the differences
in textures within the data in an accurate way. Although some techniques were suggested to
obtain such selection!p, ], they are complex to implement and in many applications the
selection is based on physiological constraints, as well as guidelines offered byl adjch
are more related to the issue of completeness.

The feature space of an image is obtained by the inner product of this set of Gabor filters
with the image:

Winn(X,Y) = Rmn(X,Y) +idmn(X,Y)
=1 (X7 y) * hmn(X7 y) (78)

Once this representation is generated, one may use all channels, or use an appropriate sub-
space.

7.5 The Design of the Gabor Filter Bank

The issue of designing Gabor filter banks is important for image representations and segmen-
tation. The guidelines for the filter bank design for each task are quite different. For image
representation we consider selecting an adequate set of filters, which constitute a basis or a
frame (see section.5.4). For image segmentation the issue of frame is not really important.
Then, we would like to use the smallest number of filters needed for accomplishing discrimina-
tion between different textures.

In this section we refer to general issues concerning the Gabor filters and filter bank.
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7.5.1 Gabor "coherent states" vs. Gabor wavelets

When Gabor published his work regarding the uncertainty principle, he referred to Gaussian
functions that were modulated by an oscillatory function. Gabdfghowed that there exists a
"quantum principle"” for information which is analogous to the Heisenberg’s uncertainty princi-
ple in physics. This principle states that we cannot tell the exact frequency of a signal for a spe-
cific location. Thus, there is a trade-off between time resolution and frequency resolution, and
there is a lower bound on their product. Gabor also discovered that Gaussian modulated com-
plex exponentials provide the minimal uncertainty in the combined spatial-frequency spaces.
Gabor dealt with functions which have a fixed Gaussian while the frequency of the modulated
wave varies. These functions are known in quantum physics as the canonical coherent states
generated by the Weyl-Heisenberg group. Decomposition of a signal to its projections onto
these functions is known as the windowed Fourier transform.DAGabor function was first

given by Daugmands):

L (xx0)? | (yyo)?y
G(X,y)zﬁlcﬁe T T dlEocvor (7.9)

where(xo, Yo) is the center of the filter in the spatial domain &gl vo) is the center frequency
of the filter in the frequency domainc and 3 are the standard deviations of the elliptical
Gaussian along andy.

However, results from vision research indicate that the central frequencies of localized fre-
guency operators have octave relationships. This means that the effective spatial width of the
Gabor filter becomes narrower as the frequency increases, and thus frequency and scale are
correlated. Daugman suggested thBt@abor wavelets sampling the frequency domain in a
log-polar manner. Thus, the window size is allowed to change according to the frequency. A
particular Gabor elementary function is used as the mother-wavelet, and the whole family of
Gabor wavelets is generated by scaling and rotation as follows:

X—Xo y_YO)

_ -1
we(awx?ananO) - HaH L|Je< a I a

(7.10)

where
We(x,y) = W(X,Y), (7.11)

and (X,y') were defined in eq.7.3. The image processing community gives more attention

to the Gabor wavelets rather than the classical Gabor functions that Gabor himself referred to.
This is because it is easy to implement, and because the inverse relationships between scale and
frequency were in synchronization with the wavelets paradigm.

7.5.2 Gabor Filter Bank Design for Image Representation

Gabor filters are characterized by their frequency and orientation as well as their frequency
and orientation bandwidths. By varying these parameters a Gabor filter spanning any elliptical
portion of the spatial frequency domain can be generated. Any funttol? can be expressed

as a weighted sum of appropriately shifted Gabor functions, the Gabor expansion.

(o]

fey) = 3 Brsm(X— X,y — yg)e?m Umbx) Vnlys)] (7.12)

r,S,m,A=—co
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where the sequence of shiffg } and{ys}, and modulation frequencig&Jy,} and{Up} have
constant spacings y, u,v which satisfyxu= yv= 1. This expansion is a complete represen-
tation as the original signal can be exactly reconstructed from the expansion coefficients. Al-
though the original introduction of Gabor filters dates back to 1946, methods for analysis and
synthesis of signals were suggested only 40 years later using complex methods such as the Zak
transform. However, since the Gabor representation is redundant we may use a finite number
of Gabor filters to obtain a good image representation.

When considering sampling of the Gabor filters, we should remember that Gabor filters are
not band limited, and thus some aliasing will occur regardless of how well we sample these
filters. The most obvious constraint for sampling a Gabor filter which is characterized by a
frequency valué- is that the sampling raté satisfiesfs > 2F in accordance with the Nyquist
rule. Using Gabor filters for image representation is not an easy task since the Gabor elemen-
tary functions do not constitute an orthonormal basis. One solution to this problem, developed
by Bastiaans ], is to introduce an auxiliary function which is biorthogonal to the Gaussian
window, so that it is used in the synthesis process. Porat and Zeevi proposed a scheme suit-
able for visual information representation through two dimensional Gabor elementary functions
[95]. They also generalized this scheme to account for position dependent Gabor-sampling rate,
oversampling, logarithmic frequency scaling and phase quantization characteristics of the visual
system.

The next step is to create the Gabor filter bank to be used. The approaches to accomplish
this task are divided to supervised and unsupervised methods. In supervised methods some
prior knowledge about the contents of the image is used to create the filter bank, whereas in
unsupervised methods the guidelines are more general, i.e. not specific to a certain image.

Supervised methods to create a Gabor filter bank were proposed by Bovikl&] ahp
they include the characteristics of the power spectrum of predefined textures. Dunn and Hig-
gins [45] have proposed a method to select the optimal parameters of a filter to obtain texture
segmentation based on knowledge of the statistics of the textures present in the image.

Unsupervised methods to construct a filter bank are more attractive as no prior knowledge
about the image in hand is required, and the framework is general in nature, not image specific.
Instead of trying to identify the filters which are the most correlated with the textures within the
image, a filter bank is created, containing filters that offer an almost uniform coverage of the
spatial-frequency domain.

Daugman §5] referred to the constraints on degrees of freedom in the two dimensional Ga-
bor filter family. He has established the relationship between the spatial-frequency bandwidth in
octavesAw, and the orientation half bandwidﬂﬁ% (where the half-angle is measured relative

to thex axis):
|
28w 1)
andA is the spatial aspect ration between the width and the length of the filter. Axifaatbrs
orientation selectivity at the expense of spatial-frequency selectivity, whereas a l&gars
spatial-frequency selectivity at the expense of orientation.

Filter size is also an important issue in filter design. The objective of applying a local
Gabor function to an image, is to estimate the energy in the filter’s output in that region. Each
Gabor filter is a band-pass filter with frequency and orientation selective properties. It turns out

AB; = arcsin(A (7.13)

NI
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that accurate edge location and accurate features estimation are conflicting tasks. High spatial
resolution is required for the accurate edge localization, while high spatial frequency resolution
(and as an immediate result of the uncertainty principle, poor spatial resolution) is required for
accurate features estimation. Thus, even after Gabor filters are selected to obtain the best trade-
off in mutual space-frequency resolution, we still have an infinite number of possible filters.
One option proposed by Jain and Farrokhnia use a gaussian window with a space eonstant
which is proportional to the intensity variations in the imagé€]

7.5.3 Gabor Wavelets Design for Image Representation

A central study in Gabor filters design for image representation is that of L'de [n his

study a derivation of a class oD2Gabor wavelets is presented, with their parameters properly
constrained by neurophysiological data on simple cells in the visual cortex and by the wavelet
theory. The Daubechies completeness criteriabwhvelets is extended tdR2 Lee showed in

his work the constraints on number of scales, orientations and frequencies so that a tight frame
is obtained.

First, Lee uses neurophysiological constraints which are widespread in the vision commu-
nity. Following the discovery of Hubel and Wiesélk] that the primary visual cortex in mam-
malian brains has a crystalline organization, Marceifd fnd Daugmani-] suggested that the
simple cells in the visual cortex can be modelled by Gabor functions. More recent neurophysio-
logical studies suggests that a wavelet like behavior of the Gabor functions is more adequate for
the presentation of the simple cells in the visual cortex. Lee starts his derivation of the Gabor
wavelets using a general Gabor function:

(Xi )/2 (7 )/2
- 5 e ol (Eo(x—%0)+Vo(y—y0)+p) (7.14)

LlJ(X7 Ys EO; Vo, X0, Yo, P, 97 o, B) =
o

where the filter in centered at= Xp,y = Yo in the spatial domain and §t= &o,v = vg in the
frequency domaino andf3 are the standard deviations of an elliptical gaussian along dmel

y axes. 0 is the orientation of the filter, angl is the absolute phase which can be set to zero.
(x—Xp)  and(y—yp)’ are defined according to €g.3. Next, Lee uses physiological constraints
to reduce the number of degrees of freedom:

Constraintl: The gaussian envelope us usually elliptical, with an aspect ratid-e2D.
Constraint 2: The plane wave with frequenéy, Vo) tends to have its “propagating direction”
along the short axis of the elliptical gaussian. This implies that the center freqU&noy)

of the filter is related to the rotation anddeof the modulating gaussian &y = wpcod and

Vo = wpsSinB. The orientation of the filter is thus aligned with the long axis of the elliptical
gaussian.

Constraint 3: The half amplitude bandwidth of the frequency response is about5ldctaves
along the optimal orientation. The relationship betweendwy can be derived to be:

o=—, (7.15)



wherek = v/2In2 2 +1 where(p is the bandwidth in octaves. Imposing these constraints, the
following Gabor fllters are obtained (where for simplicity,= 0,yp = O:

o2 .
e—;;)z(4(xco£+ySI@)2 (xsirB+yco®)?) w0 (xcoB+ysird) (7.16)

P(X,Y, wo, 0) = N

Further, he forces these filters to be admissible wavelets using Constraint 4. admissible wavelets
are functions having zero mean. Finally, he got this family of Gabor filters:

R .
W(X,Y, o, 6) = o 87(02(4(xcosﬁ+y5|rf))2 (xsinB+yco®)?) ( ot (xcoD-+ysirg) _ eg) (7.17)

e
V21K
This family of Gabor wavelets can be generated byRtex R? x SQ(2) group of rotations,
dilations and translations from the following mother Gabor wavelet:

w(x,y>=\/%Te% @) (e e (7.18)

Next, Lee requires that the family of Gabor wavelets generated constitutes a tight frame. We
will elaborate on frames in the next section.

7.5.4 The frame criterion for Gabor Wavelets

A set of vectors or functiong (i = 1, ..., ) spans a Hilbert spadt¢ if any element of that space
can be expressed as a linear combination of members of that set. Thus, eack ddtcan
be reconstructed by a linear superposition of the set members:

V= Izcia7

wherec; are scalars. The set is a basis for the vector space if the scataesunique for any
v € H, or in other words if the set of vectors is independent. The set forms an orthonormal base
if the following condition is met:

(6,8) = &ij.

In this case, the scalacsare easily calculated:
=Y ci(e.g) =¢j.
|

If the set of functions or vectors is not an orthonormal basis, but still spans the vector space,
another set of vectors’, called the dual basis, is required in order to determine the expansion
coefficients. The orthonormality condition is extended to:

(e,€) = Gij.

A vectorv € H can be fully reconstructed using:
V= Z Gie,
|
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where the scalarg are now calculated using:
(v.¢) = > ci(e.g) =cj.
|

The Gabor wavelets defined in the previous section are an example for a set of functions that
are dependent, and thus cannot be an orthonormal basis. The Gabor family and its dual can be
used to span the vector spacelsffunctions. However, it is over-complete: there is a large
degree of redundancy in representing a function using the Gabor family. The Gabor family and
similar sets of functions are studied in the context of frames. Frames were first introduced by
Duffin and Schaeffer44] in relation to non-harmonic Fourier series. The definition of frames

is as follows: A family of functionspn,, m,n € Z in a Hilbert spacé is called arame if there

existsA > 0,B < o« so that, for allu € H,

Alull? < S (U, Wmn)* < BlJul® (7.19)
mn

A and B are called the frame bounds. The relationship between A and B provides information
about the quality of the frame. The terﬁé—B is a measure of the redundancy of the frame and
the ratio% is a measure of the tightness of the frame. It was shown tAaiidB are sufficiently

close to each otheA = B, there is a simple formula for a numerically stable reconstruction of

u without using the dual frame:

2
U= ATB %(lpmn, U Wmn. (7.20)

The frame is then called a tight frame. A tight frame can be treated as an orthonormal base for
image analysis and synthesis.

Daubechiesd4] has established a frame criterion for one-dimensional wavelets and an es-
timate for the frame bounds; Her conclusion was: ".is at all descent (reasonable decay in
time and frequency/ dx(x) = 0), then there exists a whole range of scaling and translation
factors so that the corresponditg,, constitute a frame”. Lee/[] has generalized the frame
criterion to two dimensions for the Gabor wavelets and has provided the actual number of scales
and orientations needed, given the scaling and translation factors, in order to obtain a frame. In
his work, Lee considers the following wavelet family:

(X, Y, wo, 0) = %exp(—%@xz%—yz)) (exp(ix’) - exp(%kz> ), (7.21)

wherewy is the radial frequency in radians per unit length &nd the wavelet orientation in
radians. Lee has shown thatyifis admissible there exists a range of scale, orientation and
translation factorsgp, 8p andbp) for which they family constitute a frame. He also provides
the upper bounds for these parameters.

In his work Lee provides the frame boundsB for 2D Gabor wavelets. WheA > 0 and
B < « the set of filterspmn k| constitute a frame. The upper bound for the scale, orientation
and translation parameters are simply a requirementXha0. Lee computed several frame
bounds for several values of parameters to obtain tight frames. We refer the reader to his detailed
derivation[/ 9.
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Another approach, grounded in practical considerations was proposed by Manjunath and
Ma [84]. The Gabor filter bank is designed to cover the region of interest in the frequency
spectrum. The Gabor filters are constructed so that their half peaks in the frequency domain
touch each other. Thus, having the number of orientations and frequencies necessary to provide
a tight frame, we can use their scheme generate a set of Gabor wavelets of the form:

Imn(X,y) =a "g(xy,Yn), (7.22)

where(x;,,y,,) are the rotated coordinates with an@lg(see equatioi.3) and

2 2 .
1 —3(5+%5)+2mwx
ox oy

= e 7.23
2100y ( )

a(x,y)

If Uy andUy, are the lower and upper center frequencies of interest respeckvislyhe number
of orientations and is the number of scales then we can obtain the following constraints for
building our filters bank:

Ups1
a = —

U
_— (@a—1)Up
" (a+1)v2In2

i 202 2In2)202. 1
oy = tan(g—k)*(Uh—Zln(U—r‘]‘)*(Zan—%) 2, (7.24)
andcuzﬁlox,o\,zz—#oy.

7.5.5 Gabor Filter Bank Design for Image Segmentation

In this case the input image is assumed to be composed of several textures. When Gabor filters
are applied to texture images the filters parameters are usually predetermined ad hoc for the
particular task. The design of a Gabor filter bank for segmentation is conceptually different from
the same process for representation. While completeness is the main concern for representation,
capturing the differences between image patches is the key issue for segmentation. It is even
better if the filter selection is optimized. Thus, the process begins with a motivated selection of
a subset of Gabor filters which are best tuned for the segmentation task.

Several approaches were suggested for this task: Bovik et al suggested tuning the filters to
the dominant components in the FFT of the textures involvédl [Teuner et al {19 parti-
tioned the image into cells which are decomposed using a dyadic Gabor transfrom. Each cell
is examined to find the most significant spectral component. This information is then used to
create an appropriate filter bank. Zhu et 51{] applies the minimax entropy principle which
suggests that an optimal set of filters should be chosen to minimize the Kullback-Leibler dis-
tance between the true and estimated probability densities. Weldon, Higgins and Duhn |
proposed to minimize the image segmentation error by modelling the output statistics of a Ga-
bor filtered texture with a Rician distribution. Another approach taken by Jain and Farrokhnia is
to evaluate the least squares error obtained when the image is reconstructed using only a subset
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of the original filters [0]. The choice of Gabor filters and their parameters is motivated by
both constraints taken from the human visual system (e.g. frequency bandwidth of one octave)
as well as a goal to construct an approximate basis for a wavelet-like transform. To make the
computational burden easier, they suggest to discard as many filters as possible from the full
set of filters so that we maintain at least 95% of their power spectrum energy. This approach
was also taken by Guo et &i(]]. Moreover, Guo et al suggest to keep only the Gabor channels
output (considered as the filtered image) which are "far away" from each other. If the distance
between two feature images is small, then there is a redundancy and using both channels is not
necessary. The metric used for comparison is the regdlaorm, though other norms can be
considered as well. Other applications use a filter bank with parameters that guarantee that we
obtain a tight frame. Campbell and Thomas had applied a genetic algorithm to obtain the set of
filter parameter}”].

As can be seen, although segmentation and image representation are quite different issues,
filter bank design is heavily related to the ability to choose a set of filters which enables good
image representation.

7.6 Gabor Features Generation

Assuming that the primitives of natural textures are indeed localized Gabor filters tuned to fre-
guency and orientation, texture analysis takes the form of inner products or correlation of such
primitives with textured images. Existing techniques may use either complex-valued Gabor fil-
ters [L5] or real-valued, even symmetric Gabor filters]. The actual filter responses that result

from application of the Gabor filter bank may be used directly, or some non-linear thresholding
operation may be applied to these values. Other approaches involve calculating the norm of
Gabor response, and use this norm (stwhaorm) as an indication for the correlation of a filter

to the image patch. For example the magnitude of the output of the Gabor functions can be used
[15] or full-wave rectification (summing the absolute value of the real and imaginary responses)
which is a nonlinear method that is thought to be used in texture perception by the human visual
system [(]. The real and complex moments features can also be nsed[5. Malik and Per-

ona B3] provide some justification for using even-symmetric filters only. After the Gabor filters

are applied to the image, we may generate the entities which constitute the Gabor features. The
Gabor features are generated according to the application in hand. When image representation
is considered, and the parameters are selected according to a frame guidelines, we actually use
all the output channels of the Gabor filtered image. The magnitude of the output of the Gabor fil-
ters is a common selection as we assume that a larger magnitude indicates a good correlation of
the filter to the image patch. If the textures involved are not narrow-band enough, there may be
a large response to several filters, and Bovi fuggested to perform a Gaussian post filtering

to avoid this problem. An alternative for the magnitude of the Gabor filters can be rectification

of this output, i.e. summing the absolute value of the real and imaginary responses. This is
in synchronization with several models of the human visual system. In the study of Jain and
Farrokhnia [ 0], the real component of the Gabor response is only considered and each filtered
channel is subjected to non linear threshold like transformation. This non linearity bears a simi-
larity to the sigmodial activation function used in neural networks. Then some “texture energy"
measure is calculated and a square error clustering algorithm is used to produce segmentation.
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Lee, Mumford and Yuille 127 attempted to use the Gabor feature space for segmentation, by
implementing a variant of the Mumford-Shah functional adapted to signature vectors in the Ga-
bor space. Sochen, Kimmel and Malladi] apply the Beltrami flow to the Gabor channels

of textured images. The filter bank is chosen so that it provides a tight frame using the guide-
lines of Lee. The Gabor transform is then viewed as a mappingx,y,0,08) — (x,y,0,0,R,J)

whereR andJ are the real and imaginary values of the transform. Thus, it can be viewed as a
four-dimensional manifold embedded in a six dimensional space. The metric is this manifold
is calculated and the area minimizing and features preserving Beltrami flow is then applied to
the Gabor transform of the texture image. Gabor analysis was used by Sagiv, Sochen and Zeevi
[18, 19, 20, 21]for texture segmentation. Following application of Gabor filters, the full Gabor
information is considered, or alternatively a subspace containing the values of the scale, orien-
tation and frequency per pixel, for which the maximal response was obtained. They view the
Gabor space as a two-dimensional manifold embedded in the higher dimensional features space,
using the Beltrami framework. The metric of this surface provides a good indicator of texture
changes and is used, therefore, in a Beltrami-based diffusion mechanism and in a geodesic ac-
tive contours algorithm for texture segmentation. Porat and Z&éypfoposed using localized
features based on the Gabor transform of the image, and computed for this purpose the mean
and variance of the localized frequency, orientation and intensity. Sagiv, Sochen and Zeevi
[20], applied a Beltrami-based multi-valued snakes algorithm to this feature space. Hofmann
et al [L15 considered the homogeneity between pairs of texture patches by a non-parametric
statistical test applied to the Gabor space. A pairwise data clustering algorithm was utilized to
perform segmentation. In Paragios and Derichd,[a supervised variational framework was
developed, where the responses of isotropic, anisotropic and Gabor filters applied to the texture
image were considered as multi component conditional probability density functions. This in-
formation served as the stopping term in a variation of the geodesic snakes mechanism. Zhu et
al [104, 103 proposed an approach called region competition, unifying snakes, region growing
and Bayes/MDL criterion by the application of a variational principle for multi- band image
segmentation. This algorithm integrates the geometric benefits of the snakes/balloons mecha-
nism with the benefits of the statistical modelling used in region growing. Sandberg, Chan and
Vese [j] applied a vector-valued active contour without edges mechanisit¢ the Gabor

filtered images. Vese and Oshér[] used a model which assumes that an image is a linear
combination of some bounded variation function, a "cartoon" approximation of the image, and
an oscillatory function which represents texture or noise, following a model proposed by Meyer
[87]. The energy functional to be minimized in this approach assumes that the oscillating part
is given adiv(g), while g itself is iteratively updated so that its norm is minimized, following a
model proposed by MeyeB[]. Texture discrimination can then be accomplished by applying

the active contours without edges model to the resuljarBome approaches combine statis-

tical modelling, structural modelling and the filter bank model. The FRAME theory proposed
by Zhu et al 04, 103 combines the use of filters, random fields and maximum entropy as a
unified approach for texture modelling. The features extraction in this model is based on ap-
plication of a filter bank consisting of Gabor filters along with other filters to the image. The
histograms of the filtered images provide estimates of the marginal probability distribution of
the textured image. The maximum entropy principle is then applied to derive a distribution
function which is restricted to have the same marginal distribution obtained in the first phase.
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Galun et al 6] use a bottom-up aggregation framework that combines structural characteris-
tics of texture elements with filter responses. Their process adaptively identifies the shape of
texture elements and characterize them. Then, various statistics of these properties are used to
distinguish between different textures. At the same time the statistics of filter responses are used
to characterize textures. In their process the shape measures and the filter responses crosstalk
extensively. In several applications such as face recognition or image retrieval from a database,
a features vector is generated. For example, Manjunath and3¥al¢fined features vector

whose components are the responses of the Gabor channels. They used the Euclidean distance
between these vectors as a criterion for similarity between textures. A complementary feature
space, which is less evident in previous studies involves the phase of the complex outputs of the
Gabor filters. De Buff has considered this issue for simple exampidsahd Bovik et al [L5]

proposed a method to locate phase discontinuities. These are located by finding peaks in the
gradient of the phase, or the zero crossings of the laplacian of the phase.

7.7 Feature Selection in Supervised Learning

Feature selection is concerned with locating a minimum subset of the original features that
optimises one or more criteria, rather than producing an entirely new set of dimensions for the
data. Most supervised learning algorithms perform poorly in the face of high dimensional data.
Consequently, substantial work has been performed to develop feature selection methods to
improve the results obtained on the data. Many reviews exist which comprehensively cover this
area [ .2, 30, 80]. The topic is covered also in standard books, >4, , 119.

Supervised feature selection is usually posed as a search problem with three core compo-
nents [/ €]:

e Search strategyA strategy for exploring the space of feature subsets, including methods
for determining a suitable starting point and generating successive candidate subsets.

e Evaluation schem@A function to evaluate and compare candidate subsets, which serves
to guide the search process.

e Stopping criterion.One or more requirements that must be satisfied before the selection
process can be terminated.

7.7.1 Search Strategies

The search algorithms employed in supervised feature selection methods may be divided into
two categories: optimal and sub-optimal approaches.

7.7.1.1 Optimal Search Strategies

An exhaustive search will guarantee an optimal solution that maximises a given criterion func-
tion by considering all potential feature subsets. However, this is computationally intractable
for practical applications, as the number of posssible subsets grows exponentially with the num-
ber of dimensions in the data. The only alternative is the family of Branch & Bound algorithms.
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They are able to find optimum considerably faster, but at a cost of additional requirement put

on the criterion function which must fulfil the so-calletbnotonicity conditionFor overview

of the latest development in this field see{].
Nevertheless, all optimal algorithms have exponential nature and as such are usually unus-

able for high-dimensional problems.

7.7.1.2 Optimal Search Strategies

In response, various search heurstics have been applied to the problem. Of these, greedy “hill-
climbing" procedures have been mostly commonly used in the literature ffe€hese meth-

ods provide no guarantee that an optimal solution will be produced, as a single iteration of the
search procedure will not visit all regions of the search space. Forward Sequential Selection
(FSS) begins with an empty subset and at each iteration generates subsets by adding the most
relevant feature from those that have yet to be selected. Backward Sequential Selection (BSS)
works in reverse, starting with a complete feature set and discarding the least relevant feature
at each iteration. More computationally complex floating search heuristics have been shown to
produce near-optimal solution by allowing back-trackiag]|

Further development of the idea of floating search led to Adaptive Floating Seigh [
and the more flexible and promising Oscillatin Search/]. Unlike other methods, the Oscil-
lating Search repeatedly modifies the current subset of a given cardinality. Its concept makes
it possible to define a number of algorithms with different properties — targeted at finding as
good results as possible regardless time, or in contrary, at yielding reasonable results in short,
restricted time. It may be also looked upon as a universal tuning tool which is able to improve
solutions obtained in any other way.

Other feature selection approaches have made use of non-deterministic techniques such as
Genetic Algorithms [e.gl125 137, which have been shown to efficiently search large spaces
[59). These procedures maintain a constant-size population of candidate solutions correspond-
ing to different feature subsets. The solutions are represented by binary strings, where each
bit indicates the presence or absence of a feature in the corresponding subset. By applying ge-
netic operators such as crossover and mutation to population members, successive generations
of solutions can be produced that show improvement according to an accuracy-based fitness
function.

7.7.2 Evaluation Schemes

The evaluation schemes used in supervised feature selection can generally be divided into two
broad categories:

7.7.2.1 Wrappers.

Thewrapperapproach 1] to feature selection makes use of the induction algorithm itself to
choose a set of relevant features. The wrapper conducts a search through the feature space,
evaluating candidate feature subsets by estimating the predictive accuracy of the classifier built
on that subset. The goal of the search is to find the subset that maximises this criterion.
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Wrapper approaches have proved effective in increasing predictor accuracy, as the bias of
the learning algorithm is taken in account when choosing a subset. However, this results in
a lack of generality, as their dependence on a given classifier usually requires the selection
process to be repeated if a different learning algorithm is to be used. Moreover, they can be
computationally unfeasible for large data sets, where the iterative application of an induction
algorithm may be excessively time-consuming.

7.7.2.2 Filters.

Feature selection can also be performed usifitjest approach | 1], which attempts to remove
irrelevant features from the feature set prior to the application of the learning algorithm. Ini-
tially, the data is analysed to identify those dimensions that are most relevant for describing its
structure. The chosen feature subset is subsequently used to train the learning algorithm. Feed-
back regarding an algorithm’s performance is not required during the selection process, though
it may be useful when attempting to gauge the effectiveness of the filter.

Criteria that have been used to select relevant features inciufle [

e Distance measuresMetrics such as Euclidean or Manhattan distance have been em-
ployed to measure find a feature subset that maximises inter-class distance while min-
imising intra-class distances. For instance, the RELIEF &algorithm estimates feature
relevance based on how well their values discriminate between instances in the same and
different classes.

¢ Information-theoretic and dependency measuflsese measures attempt to find a fea-
ture subset that maximises the correlation between the features and each class (i.e. choose
features that are most predictive of a class), while minimising the correlation between
pairs of features (i.e. eliminate redundant features). Information-theoretic methods are
generally used to determine the correlations between features and classes, and between
pairs of features. Popular measures include conditional entr@fjyahd cross-entropy

[75].

e Consistency measurds this context, an inconsistency occurs when two instances agree
on all values for a given subset of features, but belong to different classes. Thus, fea-
ture selection can be viewed as the search for a minimal feature subset that provides an
acceptable level of consistency. A well-known example of this approach is the FOCUS
algorithm [5], which performs an exhaustive breadth-first search to locate a consistent
subset of features.

Since filter methods do not involve the repeated application of a predictor, they are less
computationally expensive than wrappers. In addition, the evaluation of intrinsic properties
of the data, independent of any classifier, allows filters to produce more general solutions that
may be suitable for use with a broad range of classifiers. However, this generality precludes
the ability to consider the interactions between a feature subset and a given learning algorithm,
suggesting that they are less effective than wrapper approaches. It has also been observed that
filters are also often only viable for large datasets with a high number of dimensidns [
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7.7.3 Stopping Criteria

For wrapper methods, the search process is often terminated when the removal of features no
longer results in improved classifier accuracy. Alternatively, thresholding can be employed to
end the search after a given number of iterations have been completed, or when a pre-defined
level of accuracy is attained.

7.7.4 An Alternative Approach to Feature Selection

For the cases when we cannot even assume that class-conditional pdfs are unimodal and the only
available source of information is the training data, an alternative approach to supervised feature
selection has been developed based on approximating the unknown class conditional distribu-
tions by finite mixtures of parametrized densities of a special type. Two methods currently exist

[97,900.

7.8 Unsupervised Feature Selection

The task of identifying a minimal set of relevant features to represent data has received signif-
icant attention in machine learning. Previously, the majority of this work has been focused on
supervised learning algorithms, with little attention given to the problem of feature selection in
the absence of class information. However, the presence of irrelevant or redundant features also
has a significant impact on the performance of unsupervised procedures, such as cluster anal-
ysis. This is particularly relevant in domains such as gene expression analysis and document
categorisation, where the importance of extracting useful information from high-dimensional
data has recently lead to the proposal of feature subset selection techniques designed to im-
prove the output of unsupervised learning algorithms.

Much of what has been said in the earlier section on supervised feature selection applies
also for unsupervised feature selection. The main difference is the question of how to evaluate
the quality of a feature subset since there is no obvious metric such as the generalisation error
of a classifier to guide us. This issue is discussed in detail in sectioh

7.8.1 Motivation

For unsupervised learning tasks, the potential benefits of reducing data dimensionality include:

7.8.1.1 Improved performance

Clustering algorithms are susceptible to the “curse of dimensionalify'a increased infor-
mation in the form of additional features does not necessarily lead to an improved partition
of the data. Rather, algorithm performance often deteriorates rapidly in the presence of many
irrelevant features. In addition, the inherent sparsity of points in high dimensional data can
further impair an algorithm’s ability to correctly uncover the natural groupings of instances in
data. Therefore, it is highly desirable to reduce data dimensionality prior to the application of
clustering algorithms.
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7.8.1.2 Increased efficiency

Dimensionality reduction can lead to a considerable improvement in the efficiency of unsuper-
vised learning tasks, as decreasing the number of dimensions in the data reduces the size of the
hypothesis space. Pre-processing techniques such as feature selection can improve the scala-
bility of many computationally complex clustering algorithms, reducing processing time and
storage overhead.

7.8.1.3 Improved interpretability

High dimensionality in data often significantly impairs our ability to perform knowledge dis-
covery tasks successfully. Clusters formed in these spaces can be difficult to interpret, with
standard visualisation techniques performing poorly in these situations. By reducing the num-
ber of features in the data, it is possible to improve the comprehensibility of the output of a
clustering procedure without adversely affecting the algorithm’s performance.

For knowledge discovery purposes, we may also be interested in discovering hidden rela-
tionships between features, and in identifying those features that are effective in discriminating
between groups of instances. The insight gained from determining relevant modeling variables
is of particular relevance in areas such as gene expression analysis where, for instance, correla-
tion between features could suggest the co-regulation of genes.

7.8.2 Feature Subset Evaluation

In supervised learning, the effectiveness of a feature selection algorithm can be assessed by ap-
plying the classifier built in the chosen feature subspace to a separate training set and comparing
the results with external class information. Where no separate data is available, cross-validation
may be employed to provide a similar evaluation. In both cases, the comparison of differ-
ent selection approaches is based on predictive accuracy. However, the absence of predefined
class labels makes it difficult to compare the effectiveness of feature selection algorithms in
unsupervised learning. The situation is further exacerbated by the strong correlation between a
clustering and the dimensions upon which it was generated.

In this section we discuss two broad approaches for the experimental evaluation of unsuper-
vised feature selection results:

e External measuredJse a priori information, which provides additional knowledge con-
cerning the data, to either directly evaluate the selected feature subset or to measure the
prediction accuracy of the partition generated on those dimensions.

¢ Internal measuresDetermine the quality of a partition without referring to any external
knowledge. This approach is motivated by the assumption that the optimal feature subset
should give the “best" partition as defined by one or more statistical indices. These indices
can be further divided into parametric and non-parametric measures.

7.8.2.1 External Measures

In cases where the annotated class labels or generative models for a dataset are available, exter-
nal evaluation criteria may provide an effective means of assessing the performance of a feature
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selection algorithm. These measures determine how closely a clustering procedure’s output
corresponds to the known natural groupings in the data according to knowledge unavailable to
the clustering algorithm itself.

7.8.2.2 Mis-assignment rate.

A simple approximation of accuracy for unsupervised learning that employs external class infor-
mation was described by Topchy et al2[]. By finding the optimal correspondence between a
dataset’s annotated class labels and the clusters in a given patrtition, a performance measure may
be derived that reflects the proportion of instances that were correctly assigned. Note that this
measure is only applicable when the number of cludtéssthe same as the number of natural
classes.

7.8.2.3 Jaccard index.

In the Jaccard indeX69], which has been commonly applied to assess the similarity between
different partitions of the same dataset, the level of agreement between a set of class labels
and a clustering resuK is determined by the number of pairs of points assigned to the same

cluster in both partitions:
a

- a-+b+4c

wherea denotes the number of pairs of points with the same lab€@ and assigned to the
same cluster ik, b denotes the number of pairs with the same label, but in different clusters
andc denotes the number of pairs in the same cluster, but with different class labels. The index
produces a result in the ran@fe 1], where a value of 1.0 indicates tl@andK are identical.

J(C,K)

7.8.2.4 Conditional entropy.

Boley et al. [L3] suggested an entropy-based measure for assessing the agreement between a
partition and external class information. For a datasetiastances, withm associated natural
classes, the level of agreement is given by the weighted sum of the entropies for eack of the
clusters:

CE(C.K) =

Sl

k m
jzl Ji; Pij 109 pij

where pij denotes the probability that an instance in clu§tpbelongs to clas. A mini-
mal value for this index is desirable, with a value of 0.0 indicating that each cluster contains
instances from a single class only.

7.8.2.5 Normalised mutual information.

Strehl and Ghosh1[LJ observed that external measures such as those described above are
biased with respect to the number of clusteras the probability of each cluster containing only
instances from a single class increasek a&reases. As an alternative, the authors proposed
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a criterion based onormalised mutual informatiqrdefining the accuracy of a partition by the
expression

5515 pijlog (5h)
E(C)E(K)
whereE(C) denotes the entropy of the distribution of class labelst(id) denotes the entropy
of the distribution of cluster labels. This criterion should be maximised, with a value of 1.0

indicating an exact correspondence between the assignment of instances in a given partition
and the dataset’s natural classes.

¢"MI(C.K) =

7.8.3 Parametric Internal Measures

As it is often necessary to analyse the performance of clustering procedures on data for which
no class information exists, a variety of “relative” cluster validation indices have been suggested
to measure the internal quality of a partition. These are often employed to identify the optimal
parameters for a specific clustering algorithm on a given data set by comparing the relative index
scores of different partitions on the data. It is important to note that many internal validation
indices make assumptions about the parametric form of the underlying distribution of the natural
classes in the data, favouring Gaussian-shaped clusters with high inter-cluster separability. A
brief summary of these indices is provided here. For more detailed coverage of this topic, see
Halkidi et al. [51] and Bolshakova and Azuajé{].

7.8.3.1 Sume-of-squares error.

A simple validation index, theum-of-squares errofor a partition ofk clusters measures the
total amount of inter-cluster scatter, as defined by the expression

k
SSE= Ix— M |2
i;XG i

wherem; denotes the mean of the points in thi clusterC;, which is the best representative

of those points. The optimal partition is defined to be that which minimises this value, indicat-
ing a collection of cohesive clusters with a minimal amount of variance between the instances
assigned to the same cluster.

7.8.3.2 Trace criterion.

Thetrace criterion, originally used in discriminant analysis, can be used to measure the com-
pactness and separability of clusters in a given partition.

Letmy be the mean vector for theth cluster containing; points and let be the total mean
vector for the partition. Thevithin-cluster scatter matrikor a partition ofk clusters, measuring
how far the points in each cluster are from their respective cluster means, can be expressed as:

k

_ . . T
%—ééynwxm>
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Thebetween-cluster scatter matriigr thek clusters, which measures how far the cluster means
are from the total mean, is given by the expression:

k
S=) x—m)(x—m)’
=1

The trace criteriontr(Sjvlsg) measures the ratio of between-cluster to within-cluster scatter,
where the trace of a matrix is the sum of its diagonal elements.

7.8.3.3 Dunn’s index.

Dunn [46] suggested a validation measure for identifying “compact and well separated clusters".
Dunn’s index for a partition ok clusters is defined as:

D = min min 8(G, )
1<i<k | 1<j<ki#j | max< <k {A(C)}

where §(C;,Cj) is the inter-cluster distance between fhih and j-th clusters, and\(G) is
the average intra-cluster distance (dispersion) ofittiecluster. The goal of highly compact
clusters with low inter-cluster similarity suggests that better partitions are indicated by larger
values for this index.

The main deficiencies of this index are its computational complexity @sd n increase,
and its sensitivity to outliersi[l].

7.8.3.4 Davies-Bouldin index (DB).

The DB-Index Bf] is a measure of cluster quality that comprises the summation ovér all
clusters of the ratio of intra-cluster scatter to inter-cluster separability. Forttheluster, with
centreZ;, we calculate the intra-cluster scatter as the average Euclidean distance between all
points inC;:

1

S=—
’Ci’xei

X —Zi|
The inter-cluster separability between il andj-th clusters is calculated by the expression:
dij =1z - Z]|

Consequently, the DB-Index is defined as the ratio:

K _
DB:} max{S+S’}
K& i#] dij

This value will decrease as clusters become more compact and more distinctly separated. There-
fore, when using this index to assess cluster validity, minimal values are desirable.
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7.8.3.5 Silhouette method.

In the silhouette method.D1], a silhouette widths calculated for each point, measuring the
strength with which it is perceived to belong to its assigned clusteralL@enote the average
dissimilarity of thei-th point to all other points in the same cluster. betlenote the average
dissimilarity of a point to all points in the nearest competing cluster. The silhouette width for
is given by:

0= e B0}

A value close to 1.0 indicates that the point is likely to have been assigned to the correct cluster.
A silhouette width of 0.0 suggests that the point could also have been assigned to the nearest
cluster, while a value of -1.0 suggests that either the point was incorrectly assigned or is an
outlier. By averaging across all clusters, an evaluation for an entire partition can be obtained.

7.8.4 Non-Parametric Internal Measures

The internal evaluation criteria described previously are parametric and implicitly favour bell-
shaped distributions, making them inappropriate for some evaluation tasks. To address this
issue, Pauwels and Frederi%xq proposed alternative non-parametric measures that do not
require any assumptions to be made about the underlying distribution of partition, allowing
them to handle arbitrarily shaped clusters.

7.8.4.1 Isolation.

This index is based on the assertion that neighbouring instances in feature space often occur in
the same natural cluster. The®lationof each cluster is measured using kheearest neighbour

norm, where the normy(x) of each instance; is defined as the proportion of itsnearest
neighbours that have been assigned to the same clusterBg summing over alh instances

in the data, the homogeneity of a partition may be computed as follows

n

o= 5 W)

The authors acknowledge that, while this index rewards partitions that assign regions of well-
connected instances to the same cluster, it fails to penalise partitions where well-separated clus-
ters are merged, since only a limited locality is considered for each point.

7.8.4.2 Connectivity

A second evaluation criterion was proposed by Pauwels and Fredefixijased on the as-
sumption that, for any pair of instances assigned to the same cluster in a partition, the density of
the data along the path connecting the pair should be consistently high. Additionally, the index
penalises clusters containing two or more well-separated regions.
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In the implementation described by Frossyniotis etat],[r pairs of instances are randomly
selected such that both instances in each pair are assigned to the same clusterisahaser-
defined parameter. A total evaluation for the partition is obtained using the expression

qz%igd(u)

wherey is the midpoint of the line joining thieth pair of points, andi(y;) is the local density
at that midpoint.

7.8.4.3 Combined isolation/connectivity.

Pauwels and FrederiXf] suggest that, by combining the output of both non-parametric in-
dices, a superior measure may be obtained that compensates for the deficiencesotdttbe
criterion. This is achieved by computing tAescores for each of the indices, and summing the
results to get an overall-score for the partition.

7.8.5 Models for Unsupervised Feature Selection

In Section 2 we discussed techniques used in supervised learning to deal with high dimensional
data. Similar problems occur when applying learning algorithms in situations where class in-
formation is unavailable. This has motivated the development of unsupervised feature selection
procedures to remove redundant and irrelevant features. In this section, we discuss the key is-
sues that must be addressed by unsupervised feature selection algorithms, and we examine two
fundamental models for feature subset evaluation.

In developing techniques for unsupervised feature selection, some key considerations are:

e Lack of class informationSupervised feature selection methods often make use of clas-
sifier accuracy to guide the search for a suitable feature subset. Conversly, there is no
definitive measure of accuracy for unsupervised learning algorithms. As illustrated in
Section7.8.2 numerous approaches have been proposed to quantify clustering perfor-
mance based on factors such as cluster compactness or inter-cluster separability. How-
ever, many of these measures are only appropriate for use with a particular clustering
model or domain.

e Number of clustersTypically the optimal number of clustekfor a data set is unknown.
In addition, the number of clusters and the dimensions used to produce a partition are
inter-related. Therefore, the use of a fixed number of clusters when evaluating feature
subsets may not provide useful results, as data in a given feature subspace may only
cluster well for certain values &

e Algorithm instability: Classifier instability has been shown to be an issue for wrappers in
supervised feature selection, where small changes in the composition of the data set can
significantly affect the resulting feature set. Ensemble techniques such as those proposed
by Breiman [.6] have been used to produce more robust classifiers. Dunne &tpdup-
gested thevrapper-2algorithm, where the selection process is stabilised by effectively
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“wrapping the wrapper". By aggregating the output of multiple sequential search proce-
dures, the authors observed a reduction in the diversity of subsets produced by different
trials of the same selection process.

In the context of cluster analysis, the stability of an algorithm refers its tendency to gen-
erate similar partitions over multiple trials performed on the same data. Many commonly
used clustering algorithms are unstable in that they can potentially partition the same data
set in many different ways. Small changes in the initial parameters specified for an al-
gorithm may lead to considerably different results. For instance, the stakaaedns
algorithm [32] will often converge on different local optima depending on the choice of
initial centroids. Consequently, unsupervised feature selection procedures that rely on the
output of a clustering algorithm may be unstable.

e Local feature selectionThe majority of work in unsupervised dimensionality reduction
has focused oglobal feature selectiomethods, which attempt to find a single set of
relevant features for an entire dataset. However, it has been observed that, in high dimen-
sional spaces, different groups of instances may cluster more successfully using different
feature subsetsi]. Often, the sparsity of the data renders all but a few features irrelevant
to each cluster. As a result, it may be difficult to reduce the size of a global feature set
significantly without incurring the loss of information.

To address this problem, several authGrg!] have proposetbcal feature selectiometh-
ods, where each cluster can potentially be assigned a different subset of relevant features.
For further discussion of this topic, see Sectioé.6.4

7.8.5.1 Wrapper Model

Wrapperschemes for unsupervised feature selection involve the search for a representative sub-
set of the original dimensions, by using the output of a clustering algorithm to direct the search
process. In general, this involves finding a feature subset that maximises algorithm performance
as quantified by some predefined criterion. When a desirable feature subset has been selected,
the same clustering algorithm is applied based on the chosen dimensions to generate the final
partition.

While wrappers have been used extensively in supervised learning, several difficulties exist
when implementing similar techniques for unsupervised learning tasks. Most problematic is
the lack of any universally accepted method for comparing the quality of partitions generated
in different feature subspaces. Other concerns include the instability of the clustering algo-
rithm being wrapped, and the computational cost of repeatedly applying complex clustering
procedures.

7.8.5.2 Filter Model

Rather than requiring the repeated application of a clustering algotiilten schemes for unsu-
pervised feature selection attempt to choose the best feature subset based on intrinsic properties
of the data. As with supervised filters, the data is first analysed to identify relevant features,
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Figure 7.6: Filter Model for Unsupervised Feature Selection

typically using information-theoretic measures to examine characteristics such as feature cor-
relation. Following the selection process, a given clustering algorithm is run on the subset of
most relevant features to generate the final partition.

Since filters are independent of any given clustering algorithm, it is possible to avoid the
difficulties posed by the lack of a definitive quality criterion and the need to choose algorithm
parameters. These methods are also less computationally expensive, as there is for the repeated
application of a clustering algorithm.

7.8.6 Unsupervised Wrapper Methods
7.8.6.1 Global Feature Selection

The simplest approach analogous to supervised wrappers involves selecting a single feature sub-
set for an entire partition by wrapping a commonly used clustering algorithm. Dy and Brodley
[4€] proposed the FSSEM method, which wraps the search process around the expectation-
maximization (EM) clustering algorithm3f]. A forward sequential search is performed to
generate candidate subsets, which are evaluated using one of two proposed selection criteria.
The first is the trace criterion, discussed in Secfidh3 which the wrapper attempts to max-
imise. The second measure is timaximum likelihoodML) criterion, employed in the EM
clustering itself . In this case the search involves choosing the subset that is most likely to fit
the data to the chosen model and parameters.

An interactive visualisation framework for FSSEM was described by Dy and Brodigy [
User input is employed to guide the choice of initial feature set, to instigate back-tracking during
the search process and to identify an appropriate evaluation criterion. This effectively allows
domain knowledge to be manually incorporated into the feature selection process.
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7.8.6.2 Feature Selection in Conceptual Clustering

Conceptual clustering algorithms process instances to produce a generalisation of the data in the
form of a set of concepts, which are often organised in a hierarchical manner. Generally concept
learners rely on a fixed set of features for describing instances, with the choice of dimensions
made prior to the construction of the concept hierarchy. This constraint renders the system
incapable of adjusting to subsequent changes in the feature set used to describe objects, without
requiring the concept model to be completely reconstructed.

To address this issue, Devaney and Ré&nj proposed AICC, amattribute-incrementation
technique that extends the COBWEB framewaik][to allow the reuse of existing concepts
when changes are made to the underlying feature set. The first phase of the algorithm involves
the modification of the feature set used to describe the concepts in the existing hierarchy. The
algorithm visits each node in the hierarchy, updating its description to reflect the addition or
removal of features. Once the feature set of each node has been updated, the tree is likely to
be unbalanced and will require reorganisation. In the second phase, each node is revisited, and
the potential increase icategory utility(CU) gained by splitting the node calculated. If the
split is advantageous, the operation is applied and the algorithm examines the newly created
child nodes in the same way. When all beneficial splits have occurred at the partition, a similar
approach is applied to examine the possibility of merging pairs of nodes occurring on the same
level in the tree. The second phase is completed when all partitions have been visited, resulting
in an amended concept hierarchy that makes use of the updated feature set.

Devaney and Ram![] employed AICC for the purposes of unsupervised feature selection,
making use of its ability to incrementally adjust the current feature set with requiring the concept
hierarchy to be reconstructed. The algorithm explores the feature space using a forward or
backward sequential search algorithm. Every time a feature is added or removed, the hierarchy
is updated and reorganised as described above. The utility score of the root partition is then
calculated to evaluate the suitability of the current feature set. The process terminates when
there is no longer an improvement in utility.

7.8.6.3 Evolutionary Multi-Objective Optimisation

In feature selection, it is generally desirable to reduce the dimensionality of data without ad-
versely affecting the performance of the learning algorithm. There will typically be a conflict
between these goals, with no feasible solution that optimises both of them. In addition, many of
the performance indices for unsupervised learning described in S&cfiditan produce con-
tradictory results. However, the wrapper methods described previously select a feature subset
based on a single criterion, without considering other relevant factors.

Alternatively, feature subset selection may be formulated as a multi-objective optimisation
problem, where the goal is to obtain a setRaireto optimalsolutions that represents the best
trade-off between objectives. These solutions are describedradominategdsince there exist
no other solutions that are better on all criteria. The curve formed by joining the senef
dominatedsolutions is referred to as tiRareto-optimal front To identify these solutions, Gold-
breg (9 suggested the use of evolutionary algorithms due to their effectiveness at performing
a rapid global search of large problem spaces. Evolutionary optimisation algorithms seek to
iteratively improve their approximation of the optimal front, while simultaneously maintain-
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ing a diverse population of solutions that prioritise objectives differently. For a comprehensive
discussion of evolutionary multi-objective optimisation algorithms, s€k [

Morita et al. B9 applied theNon-dominated Sorting Algorith(iNSGA) [111] to the prob-
lem of unsupervised feature selection. The process begins with the random generation of a
population of candidate feature subsets, each of which is represented by a bit string indicating
the presence or absence of features. A partition is formed in each feature subspace by applying
the standard-means algorithm, which is subsequently evaluated based on the number of di-
mensions in the subspace and the quality of the clustering, measured using the Davies-Bouldin
index. The results are analysed to identify the Pareto front of all non-dominated solutions.
These individuals are assigned a high “dummy" fithess value and are temporarily removed. The
process is repeated until all solutions have been assigned a fithess score, essentially ranking the
population members based on the front in which they occur. On the basis of these fitness values,
the next generation of solutions is produced using the crossover, mutation and roulette wheel
selection genetic operators. The cycle is repeatedfgenerations, at which time the subset
with the highest fithess score is deemed to be the final solution.

Kim et al. [73] performed dimensionality reduction by applying ELSA], an evolutionary
optimisation algorithm that employecal selectionto maximise population diversity. In this
context,local selectiorrefers to an optimisation approach that seeks to minimise the interaction
between population members by allocating a restricted area of the search space to each indi-
vidual. This has the effect of decreasing the likelihood that the search will converge to a single
solution prematurely, while simultaneously affording improved efficiency by allowing different
areas of the search space to be examined in parallel. Since the choice of feature subset is related
to the number of clustets the authors do not suggest the use of a fixed valu&.f&®ather, a
preferred value is determined as part of the evolutionary process. This is achieved by assigning
a value ofk to each population member, which is incorporated into the binary representation of
the individual in the form of a block of trailing bits.

The selection process begins with the generation of population members, each of which is
assigned a random solution and an initial reservoir of “energy”. The specific level of energy
assigned to an individual is determined by performinktraeans clustering in the associated
feature subspace, and rating the fitness of the resulting partition using four quality criteria based
on cluster compactness, inter-cluster separability, the number of clusters and the number of di-
mensions in the subspace. At each iteration of the algorithm, the candidate solution is mutated
and the new solution’s energy level is adjusted based upon its fithess and the fitness of other
individuals in the same locality. As a result, individuals occurring in dense regions in the objec-
tive space face greater competition for energy, thus ensuring that a diverse range of solutions is
maintained. At the end of each iteration, those individuals whose energy level is above a fixed
thresholdd are used as the basis for the next generation of solutions. The algorithm halts after
N generations, at which time the best solution is used to determine the final feature subset and
value fork.

7.8.6.4 Local Feature Selection

The wrapper techniques described previously attempt to choose a global feature subset com-
mon to all clusters in a given partition. However, several authors have profmsddeature
selectiontechniques, based on the conceppddjected clusteringas introduced by Agrawal
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et al. f/]. This clustering model allows each cluster to be potentially formed on a different
subset of features. This approach to clustering can be viewed as an optimisation problem, in-
volving the search for a set of clustef€;,Cy,...,Cy} with corresponding feature subspaces
{S1,S,...,}, that maximises intra-cluster similarity for each cluster when its points are pro-
jected to the associated feature subspace.

The authors proposed CLIQUE, a projected clustering algorithm, which attempts to address
the problem of high dimensionality by employing a grid-based scheme to locate clusters formed
from dense subspaces in the data. A three step approach is taken to choosing clusters and their
associated subspaces. Initially, each dimension is divided into a number of equal intervals, so
that the data space forms a grid. A set of dense “units” (grid cells) are found by examining the
density of points in 1-dimensional space and proceeding level-by-level untilcathensions
have been examined or no more dense subspaces are found. The second phase involves the
identification of clusters by performing a depth-first search to locate maximal sets of connected
units. Finally, a minimum-length description is generated for each cluster by covering it with a
set of maximal rectangles and greedily removing redundant (i.e. overlapping) rectangles. This
final step ensures that each cluster is described by only those features that are relevant to the
instances assigned to it.

The ProClus algorithm3] is also designed to find clusters in small subspaces of high-
dimensional data, but uses a wrapper-based extension terttesloids clustering algorithm.

The procedure begins with a greedy search to find the “best" initid¥iset B x k medoids,

which is achieved by choosing each cluster centre so that it is well separated from those that
have been previously selected. In the second phase of the algorithm, a random subset of medoids
Mc is chosen. Dimensions are assigned to each of these medoids by examining the instances in
its “locality” and choosing those features on which the points are most similar to that medoid.
Clusters are then formed by assigning each point to the closest cluster centre. Intra-cluster
scatter is measured on the resulting partition using a variation of the Manhattan distance metric.
The subseMc is iteratively improved by performing a hill-climbing search, where clusters are
repeatedly formed and evaluated. The final clusters are refined by computing the appropriate
dimensions based on the points in each cluster rather than the m%dokcﬁﬁty.

7.8.7 Unsupervised Filter Methods
7.8.7.1 Subset Search Methods

Many filter methods for unsupervised feature selection make use of search procedures such
as those applied in wrappers. However, rather than clustering the data in each candidate sub-
space, measures are employed to evaluate intrinsic properties of the data. In these situations,
information-theoretic measures, such as entropy, are commonly used to determine the amount
of information gained by using a given feature. Entropy measures the uncertainty of a random
variable. When the variable’s probability distribution is uniform, its value is unpredictable and
the resulting entropy is high. Conversely, when the variable is likely to take one of a small
number of values, the outcome is quite predictable and the entropy is low. In the context of
cluster analysis, data with an orderly configuration of distinct clusters has low entropy, while
disordered data with no obvious clusters has high entropy. This concept can be useful for fea-
ture selection, where the effect of removing a feature can be determined by the relative change
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in entropy.

The first formal proposal for unsupervised feature selection, described by Dashzfal. [
was based on the assumption that irrelevant features should have no influence on the formation
of distinct clusters, and consequently should result in no change in entropy. Therefore, if the
projection of the data froN to N — 1 dimensions preserves the separation between clusters, the
excluded feature can be deemed to be irrelevant. A backward sequential search was performed,
where the change in entropy due to the removal of each feature is calculated using:

E= _iijgl [Dij IOgDij + (1— Dij)|Og(l— Dij)}

whereDjj is refers to the normalised point-to-point distance between the poiatsdx;. At

each iteration, the least relevant feature, with the lowest entropy score, is removed. Typically the
procedure terminates when the subset has been reduced to a certain size or there is no significant
change in entropy.

Dash et al. 7] proposed an enhanced entropy-based filter, noting that distance-based en-
tropy criteria have several drawbacks. Firstly, these criteria attain optimal values at the mean
distance of (b, which represents the meeting point separating inter-cluster and intra-cluster
distances. As a result, a low inter-cluster distance.b5fdduld be assigned the highest entropy
value. Secondly, such measures are susceptible to yielding significantly higher values as a result
of relatively small increases in intra-cluster distances. The authors suggest the introduction of
a flexible meeting poinfi to address the first issue and a coefficigéid reduce the bias against
slight increases in internal cluster scatter. This leads to a new entropy measure, given by the
expression:

N N
E= ZZ Eij
i=1j=1

exp(B+Djj)—exp0) ifO<D: <u
1) —exp(0 S Uijs i
whereEjj = eiﬁpég(f?oféirf)))_em) f <Dy <10 and O< Ej; <1

exp(Bx(1.0—p))—exp0)
The proposed feature selection algorithm proceeds with a forward sequential search generating
candidate subsets. The solution that produces the lowest entropy score is selected as the best
subset of dimensions for clustering.

7.8.7.2 Feature Ranking Methods

Feature ranking selection algorithms avoid computationally expensive search procedures by
assigning weights to individual features indicating their relevance, and ordering the complete
set of features according to their respective scores.

A representative example of this ordering approach is the feature selection method for hier-
archical clustering algorithms proposed by Talavera]. The author suggests two relevance
measures for determining feature weightings. The firsaigence which was originally pro-
posed in the CLASSIT clustering syste]. In this context, the salience of a featukgis
defined as its contribution to category utility, calculated by the expression

_ SkP(C) 3 P(A = Wj[C — P(A = Vij)?

sal(A) -
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The second proposal for feature weighting is based on the distance measure for decision tree
learning [37], where the relevance of the featukeis defined as:

el(A) — ~2kP(G0100:P(C) =5 P(A = Vi) logpP(A = V) _,
— >k j P(A = Vij|Cy) log, P(Ai = Vij|Cy)
This method was further developed by Talavera/, who suggests the use of a measure for
feature dependency originally proposed by Fishigl.[ This measure asserts that a feature is
relevant if knowing its value increases our ability to correctly predict the value of other features.
Formally, the dependency of a featukxgon another featurdy is defined as:

dorhA) = 5 Py =Viy) S PR Viy Ay~
Ix

ly

- Z P(AX = ijx>2
Ix

7.8.7.3 Other Filter Methods

Some unsupervised filter methods can perform feature selection without requiring a complex
search or the selection of a threshold for choosing from a ranked list of features. Most notably,
several authors have suggested the use of a model-based clustering approach, where the unsu-
pervised learning problem is formulated in term®afyesian networkfseel1(]. In this model,

it is shown that a relevant feature must be dependent on the random cluster \@rialblieh
represents the cluster to which a point is assigned. Consequently, all relevant features must
be pair-wise dependent. However, irrelevant features will be weakly dependent on the other
features of the data. Feature selection approaches in both supervised and unsupervised learn-
ing have identified relevant features by ordering the complete feature set based on cumulative
pair-wise dependency scores.

Sondberg-Madsen et al.1 (] suggested a naive-Bayesian model, where a probabilistic
relevance score is calculated using either of two common dependency measures. Both are
based on a probability distribution derived from the data using the maximum likelihood (ML)
criterion. LetE(Y;) be the entropy of the featudg and letE(Ai|Aj) be the conditional entropy
of Y; givenY;. Themutual informatiorbetween the feature® andA is given by:

XMI(ALA)) = E(A) —E(AA])

Let PA(A;) be the probability of correctly predicting the valueAfbased on the most probable
value forA;. LetA(Ai|Aj) be the probability of correctly predicting the valueffbased on the
most probable value fok, when the value of the featurg is known. Themutual prediction
between a pair of features is given by:

Cav_q 1 PAA) | PAA)
MP(’*»AJ)—l—é(pA(Aq|Aj)+PA(AjIJP«>>

wherePA(A) = myaxp<yi), PAAIIA]) = p(yj) myaxp(yi 1Y)
| Vi :
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By calculating average pair-wise dependency using one of these measures, a relevance score for
each feature can be derived. The authors suggest performing a significance test under the null
hypothesis on each score to determine whether a feature is relevant or superfluous.

Model selection for clustering was also employed for feature selection by Vaithyanathan
and Dom [.26], who proposed an objective function based on a Bayesian estimation scheme to
evaluate the size and quality of candidate subsets. This technique was applied experimentally
to the problem of identifying topical terms in document clustering.

A feature-correlation based method for removing redudant features without any search or
ranking procedure was suggested by Mitra et &kE].[ The original feature set is partitioned
into groups using &-NN approach, where all features in a given group are highly similar.
The authors proposed a new similarity measure ntlagimal information compression index
to measure the degree of linear dependence between two features. The index corresponds to
the smallest eigenvalue of the covariance matrix of random varialdaedy, representing two
features in the data. Formally this is expressed as:

2\2(X,y) = var(x) + var(y) — \/ (var(x) + var(y))? — dvar(x)var(y) (1 — p(x,y)?)

where lower values of; indicate increased correlation. A single representative feature is cho-
sen for each group and its redundant neighbours are discarded. The active subset of features is
then iteratively refined by altering the valuelodind removing features until an acceptable level
similarity between all remaining features is attained. These retained features are chosen as the
final subset for clustering.

7.8.8 Hybrid Methods

Rather than choosing one of the models described in Sectof some authors have attempted
to handle the problem of dimensionality in unsupervised learning by combining aspects of both
wrapper and filter schemes.

Dash and Liu $3] suggested a two-phase hybrid approach, referred to as the RANK algo-
rithm. Initially, the complete set of features is ordered by assigning a weight to each feature
based on a distance-based entropy measure, as used in various filter methods described previ-
ously. Specifically, the weights are calculated by removing each feature in turn and measuring
the relative change in entropy. However, rather than using thresholding to select a subset of
features from the top of the ranked list, a wrapper method is subsequently applied to examine
the effect of the remaining features on clustering performance. Features are sequentially added
to the current subset in the order that they were ranked-theans algorithm is applied to the
subset and the resulting partition is evaluated using an arbitrary performance index.

Sondberg-Madsenl[L.(] observed that dependency-based filters behave conservatively in
their removal of irrelevant features. The authors suggested a two-phase approach to feature
selection, where a wrapper procedure is used to detect irrelevant features missed by the applica-
tion of a filter method. Initially, a search-based filter is run to identify a large set of potentially
relevant features. Subsequently, a wrapper with BSS is applied only to those features chosen
in the first phase. Redundant features are removed while there is no decrease in clustering
performance.
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7.8.9 Conclusions on Unspervised Feature Seleciton

While many studies have been conducted on the use of feature selection in supervised learning,
the presence of irrelevant or redundant features also has a significant impact on the performance
of unsupervised procedures, such as cluster analysis. However, feature subset selection in the
absence of class information is essentially an ill-posed problem. In this paper, we discussed the
key difficulties faced when performing this task, and provided a review of the general models
and practical approaches for selection that have been proposed in the recent literature.

It has been observed that wrapper schemes have considerable potential to reduce dimen-
sionality without adversely affecting clustering performance. However, inherent instability of
many popular clustering algorithms makes the validity of comparing subsets based on the par-
titions generated in the respective subspaces questionable. Recent work in the area of ensemble
clustering could potentially address this issue by improving the robustness of clustering gener-
ated when evaluating subsets of features. Alternatively, selection methods could examine the
relationship between base-level features and the output of an ensemble procedure. It must be
noted that, in both cases the selection of suitable ensemble parameters for a given dataset is
non-trivial. Furthermore, the computational complexity of ensemble procedures may render
such approaches infeasible for large datasets.

Evolutionary multi-objective optimisation algorithms have been applied effectively in wrap-
per feature selection schemes to identify solutions that balance conflicting goals such as min-
imising feature subset size and maximising partition quality. However, the repeated application
of a clustering algorithm when evaluating possible solutions also makes this approach compu-
tationally expensive. We suggest that filter-based schemes employing these optimisation algo-
rithms could provide a comparable level of success with improved efficiency.

An outstanding issue remains the difficulty in choosing an appropriate evaluation measure to
compare unsupervised feature selection algorithms. The use of synthetic data has been prevalent
in the literature, as relevant features can be identified from the data’s generative model. How-
ever, for practical purposes it is desirable to examine the performance of a selection technique
on unlabelled data in a domain of interest. In these situations, the use of non-parametric internal
measures could prove useful. As with the issue of cluster quality, no definitive techniques has
yet been suggested for validating the output of an unsupervised feature selection algorithm.

7.9 Conclusions

In this section we have presented an extensive treatment of Dimension Reduction organised
into Feature Transformation approaches and Feature Subset Selection Approaches. In situations
where interpretability is not an issue and irrelevant and correlated features are assumed to exit,
the Dimension Reduction techniques presented here can be very effective. If interpretability is
important, in order to gain some insight into the domain of study for instance, then the Feature
Subset Selection techniques described in the latter part of this chapter should be considered.
Finally, the benefits of transparency that come from working in the original feature space in
feature selection should not be underestimated.
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Chapter 8

Conclusion

This review provides a comprehensive coverage of the most important Machine Learning tech-
nigues in use in the processing of Multimedia data. We have covered supervised learning tech-
niques in detail in chapter 3. This is the longest section of the review reflecting the importance
of this area. Chapter 4 covers unsupervised learning techniques with a particular focus on basic
clustering techniques and on unsupervised Bayesian techniques. Reflecting the fact, that the
distinction between supervised and unsupervised learning is not completely black and white,
the next chapter (6) cover the emerging areas of semi-supervised learning, a machine learning
methodology that lies somewhere between the supervised and unsupervised extremes. Chapter
6 covers active learning which is presented here as a variant of classical supervised learning
which is passivein these terms. The final core chapter is chapter 4 on dimension reduction.
Reflecting the importance of this issue in multimedia data processing, this is one of the longest
sections of the report.

The contents of these core chapters reflect the expertise in the Muscle consortium. Appendix
B presents a brief summary of the topics we propose to cover in the coming months.
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Appendix A

Areas of Expertise within Muscle

e ENSEA: Sup, Un-sup, Semi-supervised

e SZTAKI: learning in motion tracking and background filtering, supervise/unsupervised
learning in texture segmentation, adaptive intelligent image sensors

e TCD

— Simon Wilson: Bayesian Learning

— Padraig Cunningham: Case-Based Learning, Neural Networks, Ensembles, Feature
Selection

¢ Bilkent - Enis Cetin: Feature Extraction techniques

¢ INRIA-Ariana: Bayesian learning of parameters and models for image processing.
e LIC2M: indexing and retrieval of multilinual and multimedia data

e Technion: Active Learning

e |Bal: decision tree induction, CBR, conceputal clustering, feature subset selection
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Appendix B

Next Steps within Muscle

o Cluster Validity MetricEEvaluation of existing cluster validity metrics show that available
metrics still do not capture the notion of cluster quality well. This area will be a topic
within Muscle over the coming year.

e Adaboodimproving the robustness of Adaboost for use in person detection systems. This
work will involve a comparative evaluation of the performance of this improved Adaboost
against other classifiers.

e Unsupervised Bayesian Technigugayesian CBIR and parallel processing for CBIR
with large databases.

e Unsupervised Learning for Visual Attentidve will be investigating unsupervised learn-
ing in the context of measuring visual attention and similarity in images. This work will
build upon existing algorithms for visual attention to develop measures of similarity that
do not depend upon sets of pre-selected features or labeled data.

e Learning from User Interaction in CBIRhe objective of this work is to exploit the infor-
mation provided by user’s interaction in CBIR. All these semantic annotations could be
integrated in order to improve the search engine. The work will use similarity matrices
of the database images. The similarity matrix is analyzed in the kernel matrix frame-
work. We will deal with efficient kernel adaptation techniques, taking care to preserve
the properties of kernels.

e Scene Event Analysie will work on scene event analysis and indexing, motion tracking
and gesture recognition by using Bayes, PCA and SVM.

e Ontology Discoveryfraditional NLP techniques for determining semantic similarity be-
tween words and identifying ‘is-a’ relationships, include bag-of-word techniques and
lexico-syntactic features as presented above. We will work on combining these tech-
niques to automatically create taxonomies. There are a lot of practical issues when build-
ing systems that automatically extract taxonomies from text. These include the design
and stopping criteria for the chunk parser and the semantic generalizer, the semantic sim-
ilarity measures (could be different at different levels of the taxonomy) and the evaluation
of the results.

223



e Learning shape probability distributions for regionBrior information about the geom-
etry of the regions in an image that correspond to some entity is critical for extraction
of many types of semantics, and yet existing models are very limited in their ability to
describe this information. Learning a model (a.k.a. probability distribution) for region
geometry from examples is a crucial part of capturing this prior information because it
is frequently impossible to construct the interactions necessary to describe a particular
class of regions froma priori considerations. Over the coming year, INRIA-Ariana will
tackle the problem of learning probability distributions over geometries by applying a
Bayesian approach to the higher-order active contours developed in the Ariana group,
using a reformulation of these models as statistical field theories.
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