MUSCLE Showcase:

Movie Summarization and Skimming Demonstrator

ICCS-NTUA (P. Maragos, K. Rapantzikos, G. Evangelopoulos, I. Avrithis, S. Kollias)

AUTH (C. Kotropoulos, P. Antonopoulos, V. Moschou, N. Nikolaidis, I. Pitas)

INRIA-Texmex (P. Gros, X. naturel)

TSI-TUC (A. Potamianos, M. Perakakis)

Partners

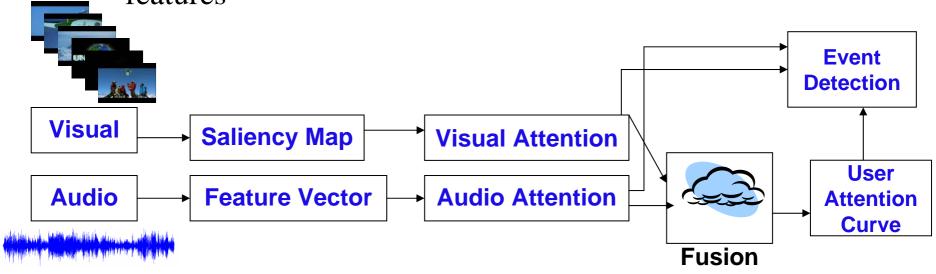
■ ICCS-NTUA (leader)

☐ Design and develop AudioVisual Saliency estimators. Abrupt-change Detectors. Pre-segmentation around key frames.

AUTH

☐ Provide a movie database along with appropriate annotation. Collaborate on AV Saliency detection.

INRIA-Texmex


■ Statistical models for video/scene segmentation.

TUC

Design and implement the user interface

Audio-Visual Attention Modeling – Event Detection

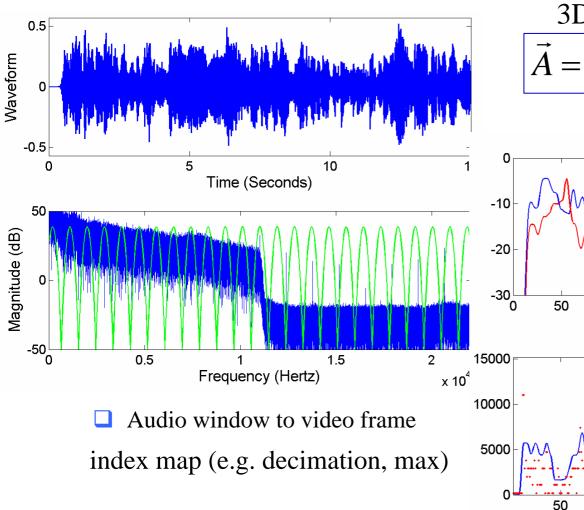
- Detecting events by attention modeling
- Two-module (aural, visual) attention for 3D event histories
- Attention curve extraction. Fusing streams vs. fusing features

Audio Modeling and Features

Audio signal model: sum of AM-FM components

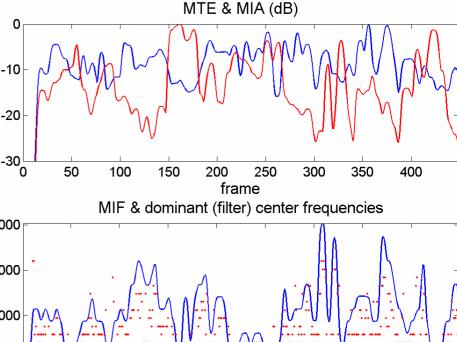
$$s(n) = \sum_{k=1}^{K} A_k(n) \cos[\Phi_{\kappa}(n)]$$

- Modulation bands through a linear bank of K Gabor filters.
- Tracking the *maximum average Teager Energy* (MTE)

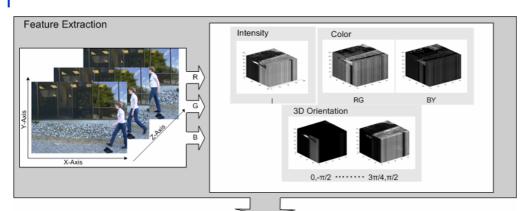

$$MTE(m) = \max_{1 \le k \le K} \frac{1}{N} \sum_{n=1}^{N} \Psi \left[\left(s * h_{k} \right) \left(n \right) \right]$$

- h_k : k-th filter response, Ψ : Teager-Kaiser Energy operator
- MTE : dominant signal modulation energy.
- Demodulating, via DESA, the dominant channel and frame average

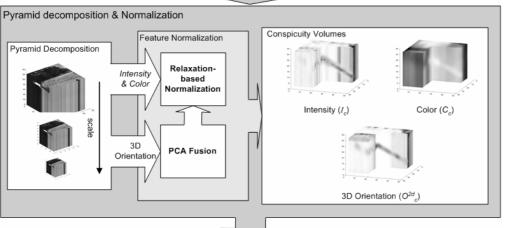
$$MIA(m) = \frac{1}{N} \sum_{n=1}^{N} |A_i(n)|$$


$$MIF(m) = \frac{1}{N} \sum_{n=1}^{N} |\Omega_{i}(n)|$$

Feature Vector Formation


3D normalized feature vector

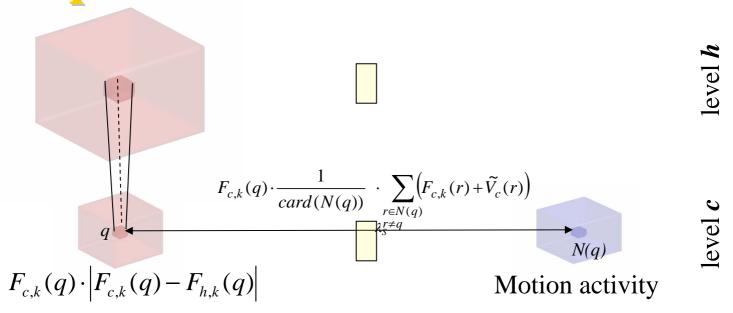
$$\vec{A} = \{A_i\} = \{MTE, MIA, MIF\}$$


frame

Spatiotemporal Visual Saliency

Features (F)

- \square Intensity (I)
- \Box Color (*RG*, *BY*)
- \square Spatiotemporal orientations (\widetilde{V})


Saliency Volume

Spatiotemporal Saliency

Steps

- Pyramidal decomposition
- Normalization & Fusion
- Conspicuity volumes generation
- ☐ Saliency volume computation

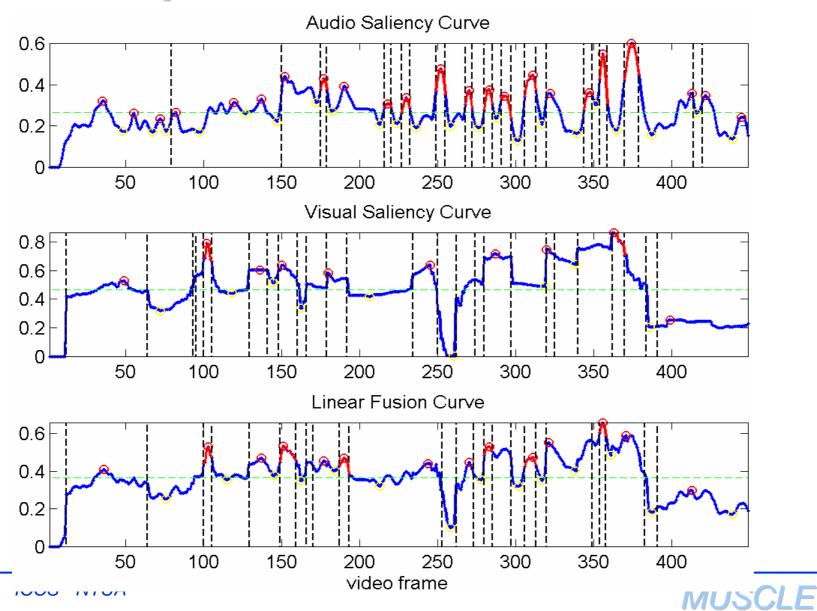
Visual Saliency model: Feature Competition

Iterative energy minimization scheme that acts on 3D local regions and is based on center-surround inhibition constrained by inter- and intra- local feature values.

$$\begin{split} &\frac{\partial E}{\partial F_{c,k}(q)} = \lambda_{D} \cdot \frac{\partial E_{D}}{\partial F_{c,k}(q)} + \lambda_{S} \cdot \frac{\partial E_{S}}{\partial F_{c,k}(q)} = \\ &= \lambda_{D} \cdot \left(\left| F_{c,k}(q) - F_{h,k}(q) \right| + sign\left(F_{c,k}(q) \right) \cdot F_{c,k}(q) \right) + \lambda_{S} \cdot \frac{1}{card\left(N(q) \right)} \cdot \sum_{\substack{r \in N(q) \\ r \neq q}} \left(F_{c,k}(r) + \tilde{V}_{c}(r) \right) \end{split}$$

 $F = \{I, RG, BY\}, k \in \{1, ..., card(F)\}$

MUSCLE


AudioVisual Fusion – User attention curve

Simple linear fusion scheme

$$M = \vec{w}_{v} \cdot \vec{V} + \vec{w}_{a} \cdot \vec{A}$$

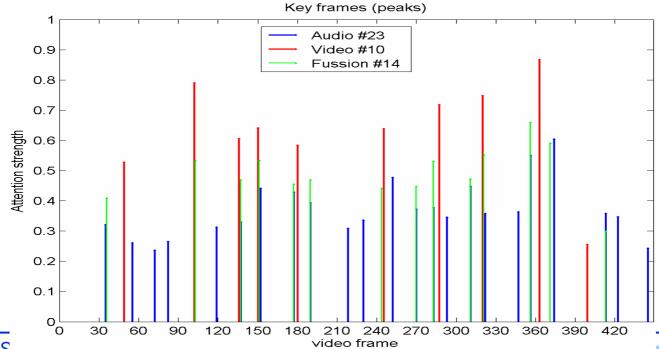
- Detecting events by 4 curve characteristics:
 - ☐ *Peak/valley* detection (key-frame selection)
 - Local maxima\minima
 - ☐ Sharp transition detection (1D *edges*)
 - LoG operator on curve
 - Scale parameter by std of Gaussian
 - Thresholding values (salient segments)
 - Region of peak support (lobes, segments between edges where maxima exist)
- Two fusion schemes:
 - ☐ i) Fuse curves (linear, non-linear fusion)
 - ii) Detect in audio and video and combine (e.g. AND,OR)

Saliency Curves

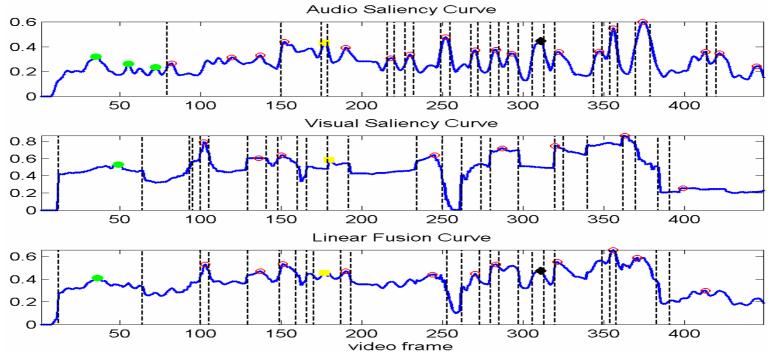
Example (Movie trailer)

- Movie trailer (mpeg): 15sec, 30frames/sec
- Rich in Events:
 - Visual (color, motion, action shots, persons, objects, text)
 - Audio (helicopters, noises, music, speakers, transmissions, effects)

Event detection based on peaks (fusion curve)



Key frame selection



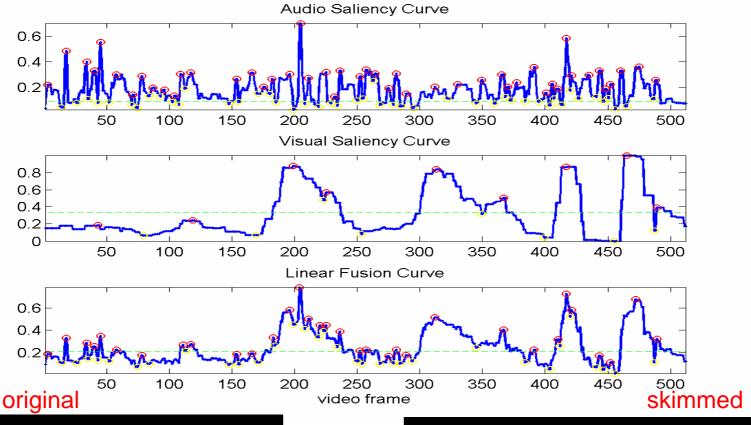
MUSCLE

ICCS

Examples of Event Detection

- Video suppresses/groups audio events (audio event present)

Audio & Video events match (both are present)


Audio giving event (video event absent)

MUSCLE

ICCS - NIUA

Examples of Event Detection: AUTH database

Movie Database Description

- 42 scenes were extracted from 6 movies of different genres, i.e., Analyze That, Lord of the Rings, Secret Window, Platoon, Jackie Brown, Cold Mountain.
- 25 out of the 42 scenes are dialogue instances and the remaining 17 are annotated as non-dialogue scenes.
- Dialogue scenes last from 20 sec to 120 sec.
- Total duration: 34 min and 43 sec.

Current Scene Annotation

- **Dialogue types** for both audio and video streams are:
 - ☐ CD (Clean Dialogue)
 - ☐ BD (Dialogue with background)
- Non-Dialogue types for both audio and video streams are:
 - CM (Clean Monologue)
 - BM (Monologue with background)
 - □ ND (Other)

Extended Scene Annotation

Motivation

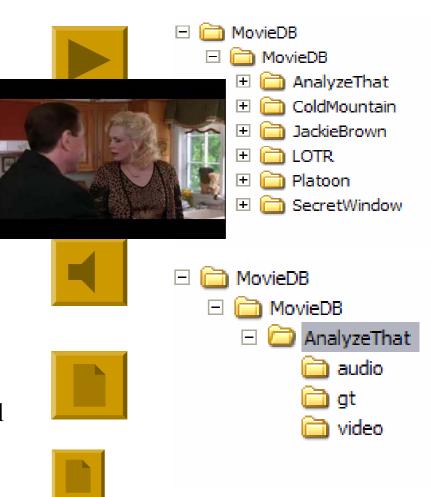
- ☐ The notion of saliency is quite subjective
- Human evaluation needed to ensure "objectivity"

Objective

☐ Create annotation useful for evaluating saliency detection methods

Use 3 levels of annotation

- Audio only
- ☐ Visual only
- Audiovisual


Database Description

• *gt folder*: ground truth information (*.xml files).

 video folder: the video streams without the audio channel (*.av files).

 audio folder: the audio streams without the visual channel (*.wav files).

- *actors index*: actor's Id, name, and photograph (*.xls file).
 - Actors info is also available in xml format for each video scene.

Selection and Learning of Salient Events (INRIA)

- Generic solution of selection (1)
 - Select a subset of salient events: global minimization of redundancy between salient events
- User-oriented solution
 - Goal: provide a summary based on user specifications
 - ☐ Learn parameters of user-specified events
 - Select salient events according to the learning phase and method (1)

Movie Summarizer Player UI (TUC)

- User selects the degree of summarization
 - ☐ Available levels: none, ½, ¼, trailer
- User can change the level at any time
- System pre-renders the movies at the four levels of summarization
- Movie player based on xine open-source multimedia player
- xine: written in C++, easy to modify, lost of features, light version also available

Example xine player control

Add summarization level control buttons

x2 x4 xM

Current Status & Future Work

Current Status

- **■** Baseline version is available
 - Audio saliency module
 - Video saliency module
 - Simple audiovisual fusion approaches have been adopted
 - **Experiments on the AUTH database have been undertaken**

Next steps...

- **■** Extension of AUTH database annotation
- ☐ Statistical models for audiovisual segmentation
- ☐ Design & implementation of a user friendly interface