Classification and Machine Learning techniques for CBIR: introduction to the RETIN system

Matthieu Cord

ETIS CNRS UMR 8051

Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.1/81

Content-Based Image Retrieval

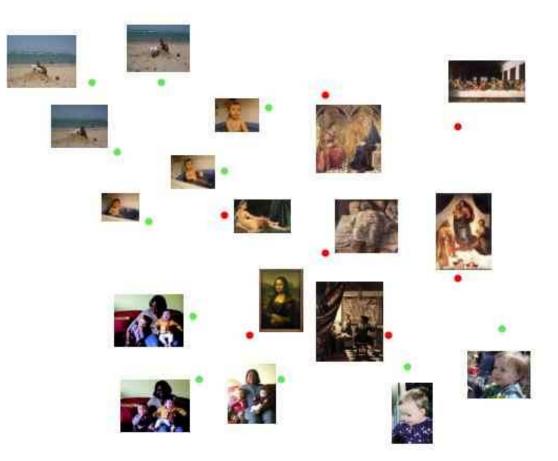
- Retrieve large categories of pictures in generalist image database
- Vector-based description of images
- User interaction
- Statistical learning approach
 - → Multimodality (category retrieval)
 - \rightarrow Efficient strategies in text retrieval
 - \rightarrow Interactive strategies (active learning)

- 1. Binary Classification for CBIR
- 2. Active learning:
 - (a) Error Reduction and Uncertainly-Based strategies
 - (b) RETIN scheme: Boundary Correction and diversity
- 3. Semi-supervised classification
- 4. Long Term Learning

Supervised Classification for CBIR

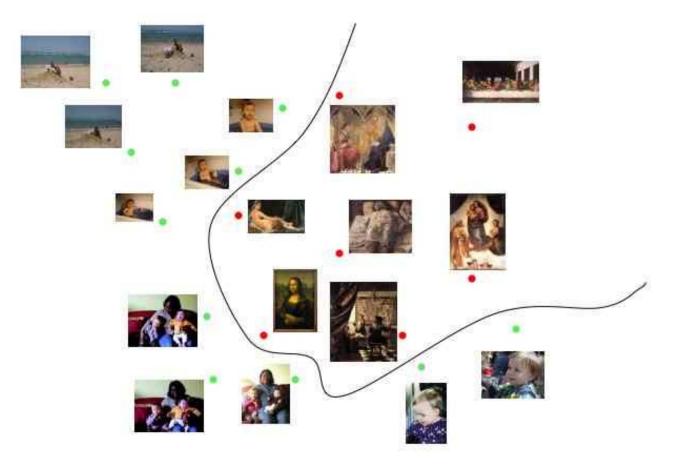
Introduction

• Vector-based description of images;



Introduction

binary classification



Three representative methods for CBIR:

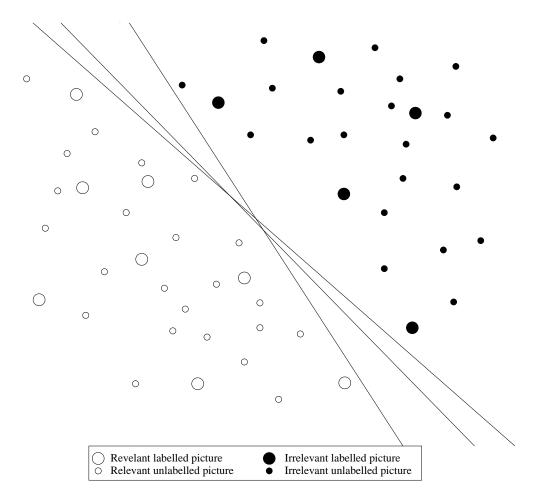
- Bayes Classifiers (Vasconcelos)
- k-Nearest Neighbors
- Support Vector Machines (Chapelle)

Specific characteristics [Chang ICIP'03]:

- (c1) High dimension and non-linearity of input space
- (c2) Few training data
- (c3) Many unlabelled data
- (c4) Interactive learning (Relevance feedback)
- (c5) Unbalanced training data

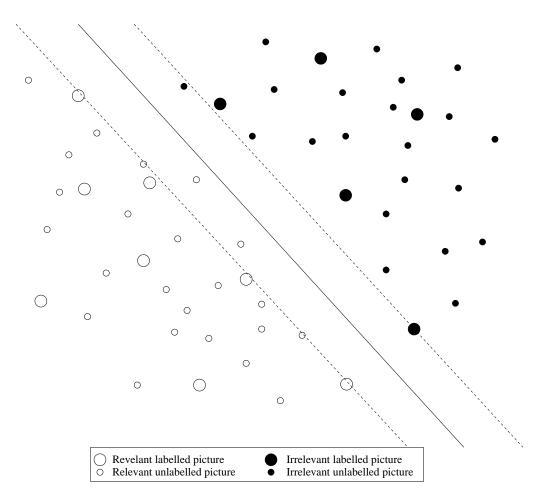
Support Vector Machines (1/4)

Classification by an hyperplan:



Support Vector Machines (2/4)

Choose the hyperplan which maximizes the margin:



Support Vector Machines (3/4)

Quadratic problem:

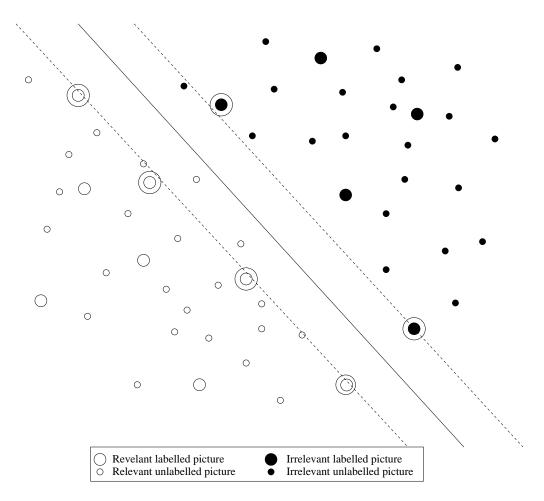
$$\begin{aligned} \boldsymbol{\alpha}^{\star} &= \operatorname*{argmax}_{\boldsymbol{\alpha}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} < \mathbf{x}_{i}, \mathbf{x}_{j} > \\ \text{with} \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ \forall i \in [1,n] & 0 \le \alpha_{i} \le C \end{cases} \end{aligned}$$

Decision function:

$$f(\mathbf{x}) = \sum_{i=1}^{n} y_i \alpha_i^* < \mathbf{x}, \mathbf{x}_i > +b$$

Support Vector Machines (3/4)

Support Vectors:



"Kernelization"

Kernelization of SVM:

• SVM decision function:

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i^* < \mathbf{x}, \mathbf{x}_i > +b$$
(1)

• "Kernelized" version:

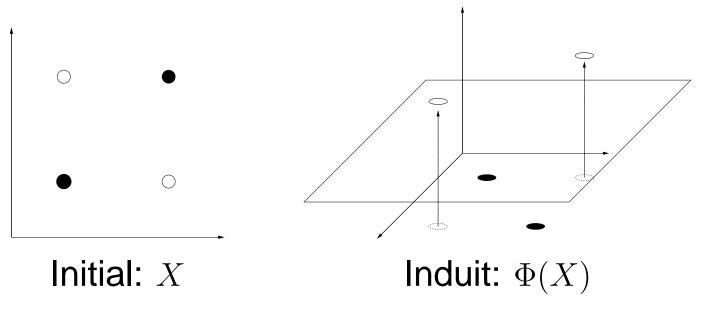
$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i^{\star} k(\mathbf{x}, \mathbf{x}_i) + b$$
 (2)

Kernels

Dealing with the class of kernels k corresponding to dot product in an induced space \mathcal{H} via a map Φ :

$$\Phi : \mathbb{R}^p \to \mathcal{H}$$
$$x \mapsto \Phi(x)$$

that is $k(\mathbf{x}, \mathbf{x'}) = <\Phi(\mathbf{x}), \Phi(\mathbf{x'}) >$

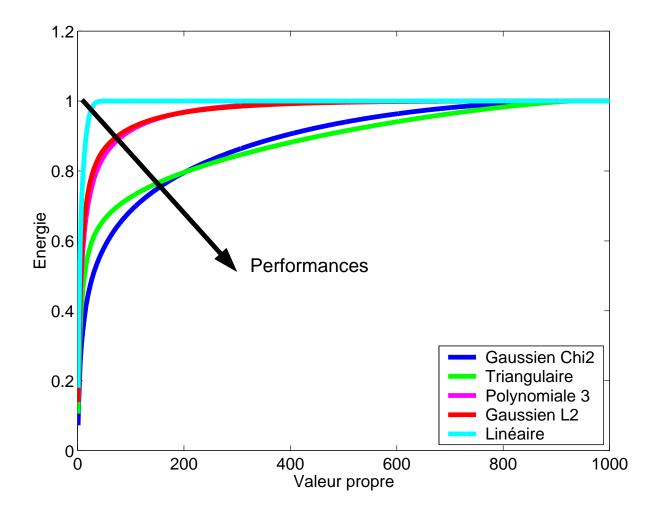


Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.13/81

Kernels

- Usual kernels: Lin., Polynomial, Sigmoid, RBF ...
- Choice of a kernel depends on the database and its usage:
- → Different levels of performances for two different kernels;
 - In our experiments: Gaussian kernels give the best results
 - \rightarrow The most adapted to CBIR;
 - → In the following experiments: Gaussian kernels with χ^2 distance, because feature vector are distributions.

Spectral analysis of kernel matrices



Large distribution \Rightarrow high performances;

Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.15/81

Deal with (c1) high dimension and non-linear input space:

- \rightarrow Use of a kernel function to induce a feature space
- \rightarrow Relevance function *f* using Kernel in SVM:

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i^* \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b$$

When a method cannot be directly "kernelized": KPCA.

Protocol:

- COREL Photo database (6,000 images);
- 50 categories, 100-300 size;
- Training set of 200 points (unbalanced).
- Statistical measure: Mean Average Precision MAP

Methods	MAP(%)	Time
No learning	8	-
Bayes/Parzen	18	0.09s
k-NN	16	0.20s
SVM	20	0.13s

SVM selected [Gosselin CVDB04]

Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.17/81

Experiments

Training with 10 examples => poor top-similarity ranking results

 \rightarrow User interaction (c4) to enhance the retrieval

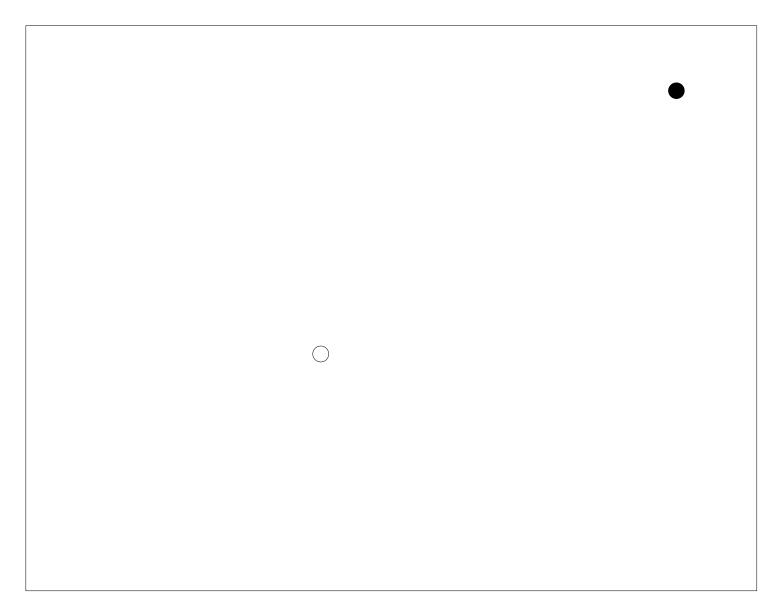
2 components: the parameter tuning of f and the optimization of the set of examples

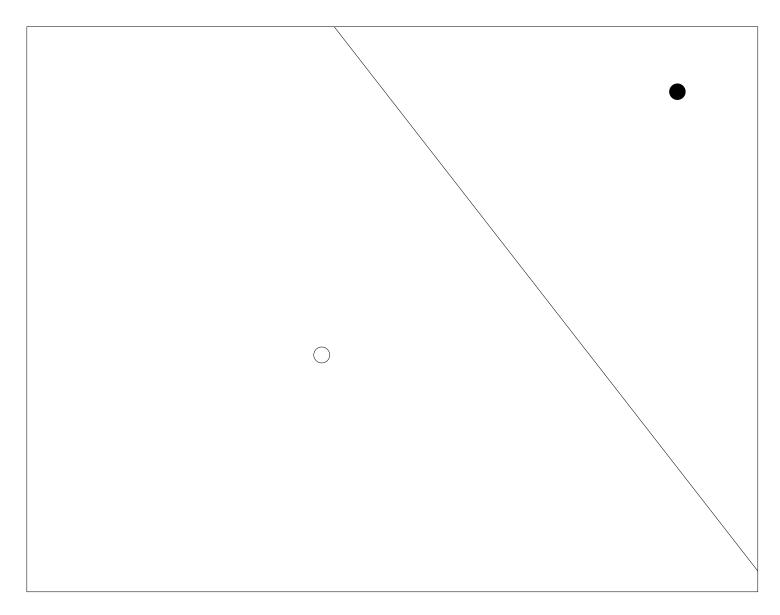
Active learning for CBIR

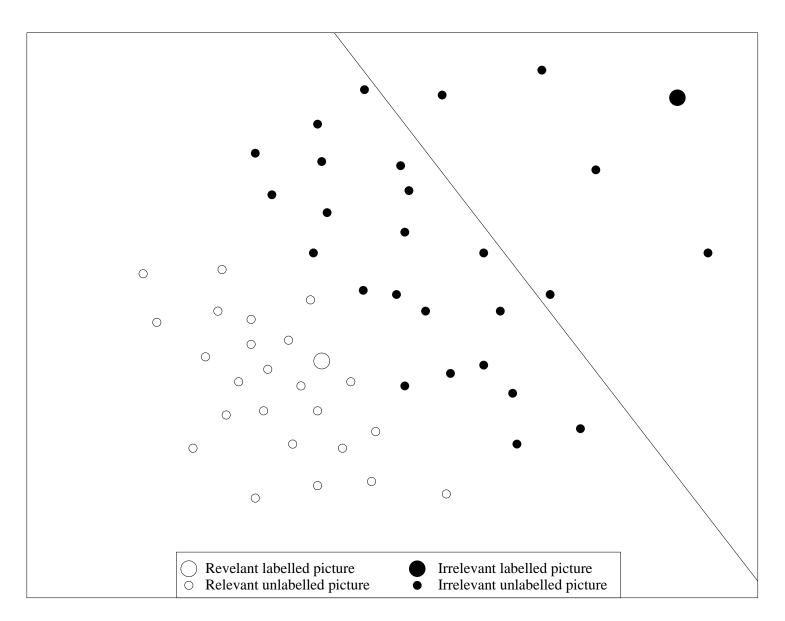
Active Learning

Deal with the few training data (c2) and interactive learning (c4) characteristics

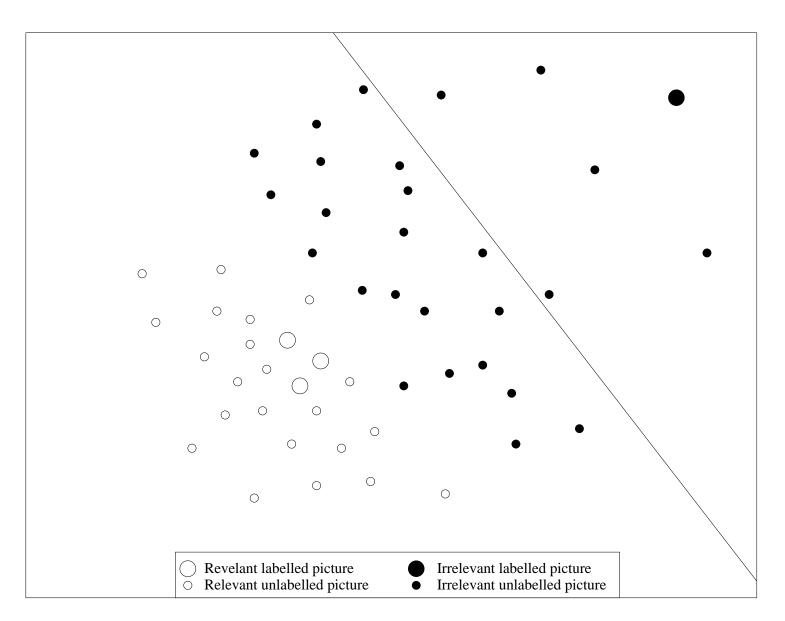
- $\rightarrow\,$ optimize training data to get the best classification with as few as possible user labeling
- Strategies of **selective sampling**:
 - Relevance-Based (RB):
 - \rightarrow Select the most relevant image
 - Uncertainly-Based (UB)
 - Error Reduction (ER)
 - $\rightarrow\,$ Priority to the classification error minimization





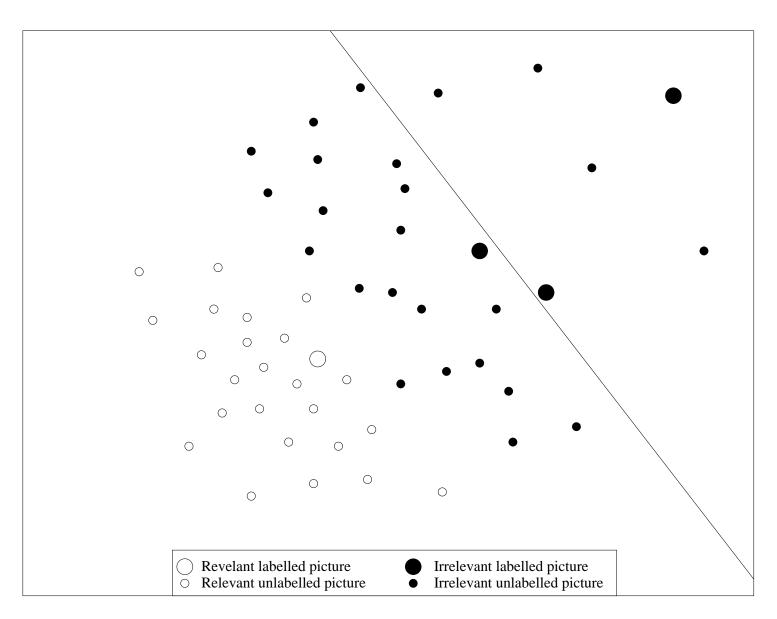


Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.23/81

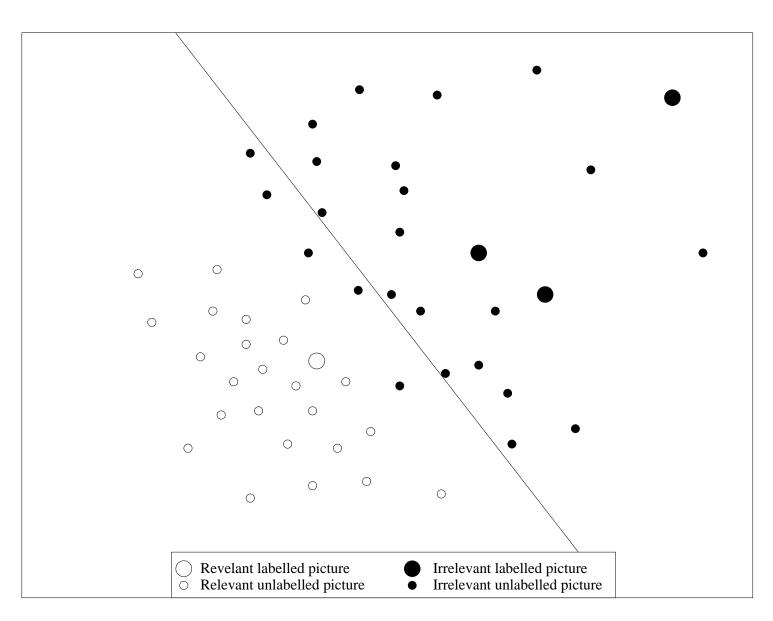


Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.24/81

Labelling the most difficult to classify (UB)



Labelling the most difficult to classify (UB)



The aim of an active learner is to select the most interesting picture \mathbf{x}^{\star}

 \rightarrow We propose to express the following methods as the minimization of a cost function $g(\mathbf{x})$:

$$\mathbf{x}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} g(\mathbf{x})$$

For Relevance-Based active learning: $g(\mathbf{x}) = -f(\mathbf{x})$ where $f(\mathbf{x})$ is the relevance function

Active learner:

$$\mathbf{x}^{\star} = \underset{\mathbf{x}}{\operatorname{argmin}} \ g(\mathbf{x})$$

• UB strategy selects the picture which is the most difficult to classify:

$$g(\mathbf{x}) = |f(\mathbf{x})|$$

- Method:
 - SVM_{active} (Tong):
 - \rightarrow Works in the version space
 - \rightarrow Needs an accurate estimation of the boundary

Error Reduction (ER)

 ER strategy (Roy and McCallum): select the picture which will minimize the new expected test error:

$$g(\mathbf{x}) = \sum_{c \in \{-1,1\}} E_{\hat{P}_{\mathcal{A}+(\mathbf{x},c)}} \hat{P}_{\mathcal{A}}(c|\mathbf{x})$$

with:

- *P*_A(c|x) the estimation of the probability of class c given x, with the training set A
- $E_{\hat{P}_{A+(\mathbf{x},c)}}$ the **estimation** of the expectation of the test error, with training set $A + (\mathbf{x}, c)$
- Require an accurate estimation of $\hat{P}_{\mathcal{A}}(c|\mathbf{x})$

- Active learners select only one example
- In image retrieval, several images labeled during each feedback step = batch processing How to select other ones ?
 - Iteration of the active selection:
 - \rightarrow Problem: close images may be selected.
 - Diversity: select different images:
 - → Clustering or using angle Diversity AD (Brinker):
 - I^{\star} set of selected images

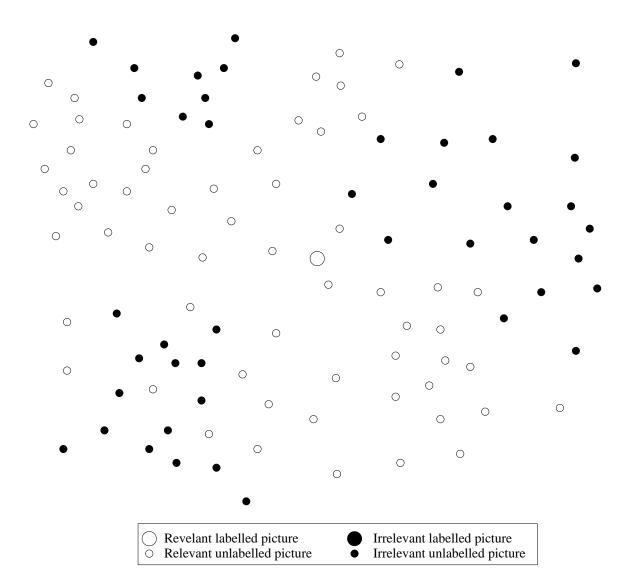
$$g_{I^{\star}}(\mathbf{x}_{i}) = \lambda \underbrace{g(\mathbf{x}_{i})}_{\text{active criteria}} + (1 - \lambda) \underbrace{\max_{j \in I^{\star}} \frac{|k(\mathbf{x}_{i}, \mathbf{x}_{j})|}{\sqrt{k(\mathbf{x}_{i}, \mathbf{x}_{i})k(\mathbf{x}_{j}, \mathbf{x}_{j})}}_{\text{angle criteria}}$$

17 /

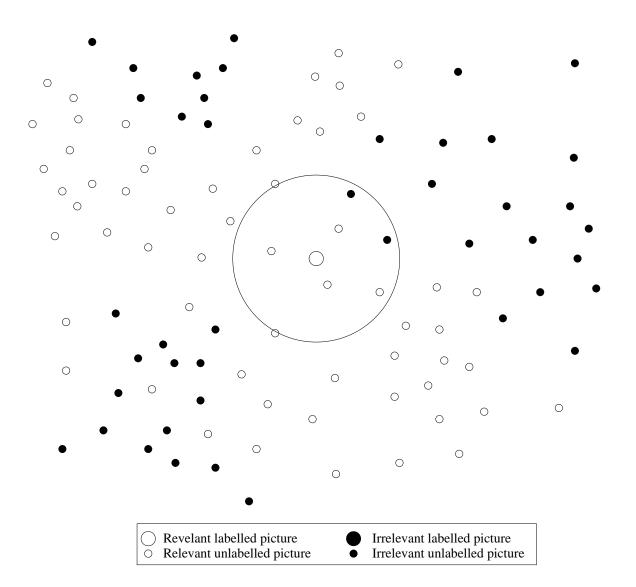
 \sum

- Second: having a good estimation of *f* near the boundary
 - Exploit again the *batch processing*: user labels \neq expected labels (balanced set)
 - too many positive labels => go further (and vice versa)
- Boundary Correction (BC):
 - $O = \operatorname{argsort} f$, and s the index of the current threshold: $f^*(\mathbf{x}) = f(\mathbf{x}) f(\mathbf{x}_{O_s})$
 - \rightarrow Update: s(t+1) = s(t) + 2(pos(t) neg(t)) with:
 - pos(t) (resp. neg(t)) = number of relevant (resp. irrelevant) labels
 - t = feedback iteration number
 - Efficient during the first feedback steps Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.31/81

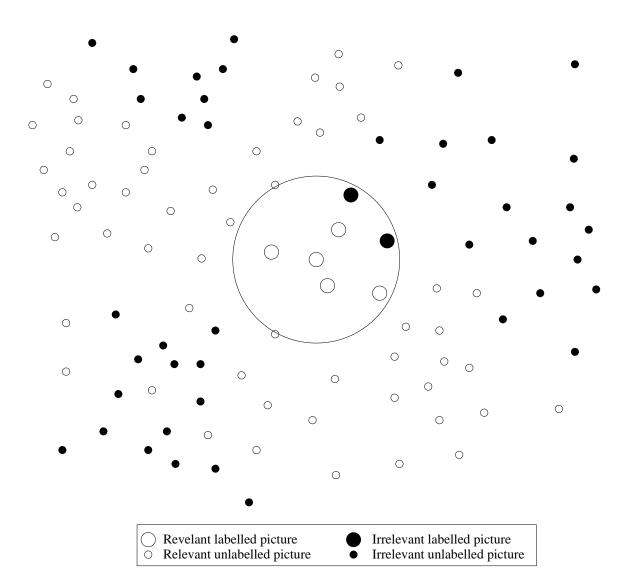
An example of retrieval session (1/8)



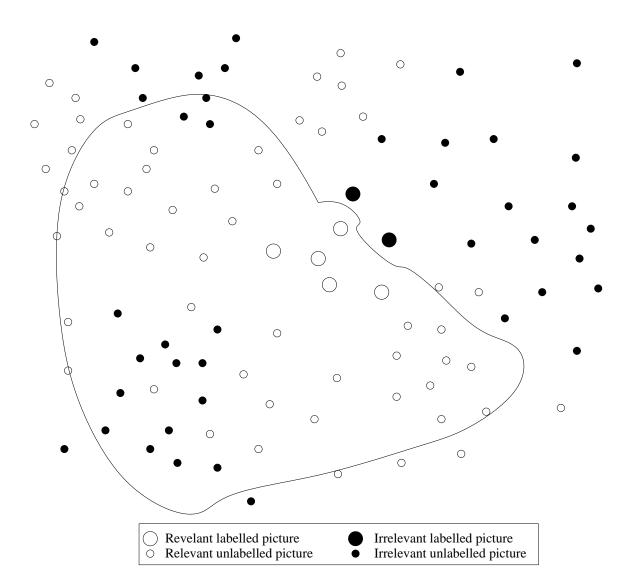
An example of retrieval session (2/8)



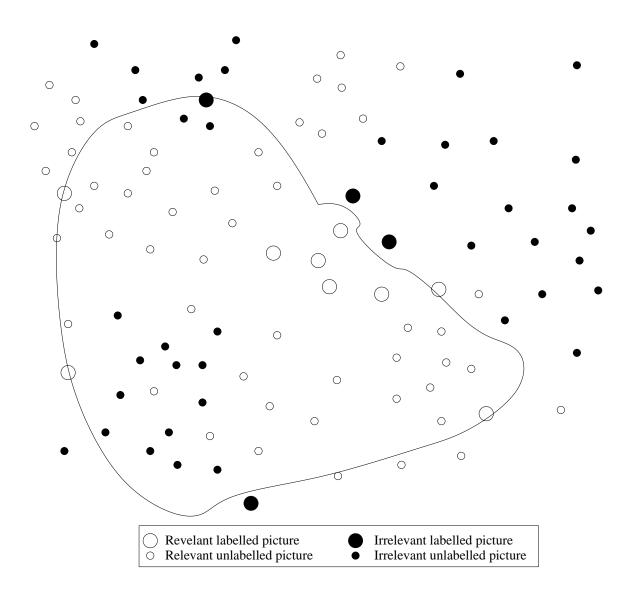
An example of retrieval session (3/8)



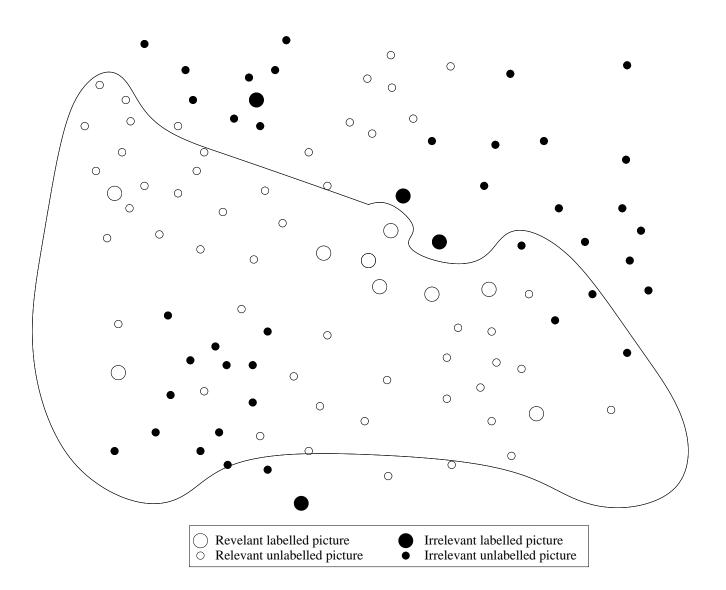
An example of retrieval session (4/8)



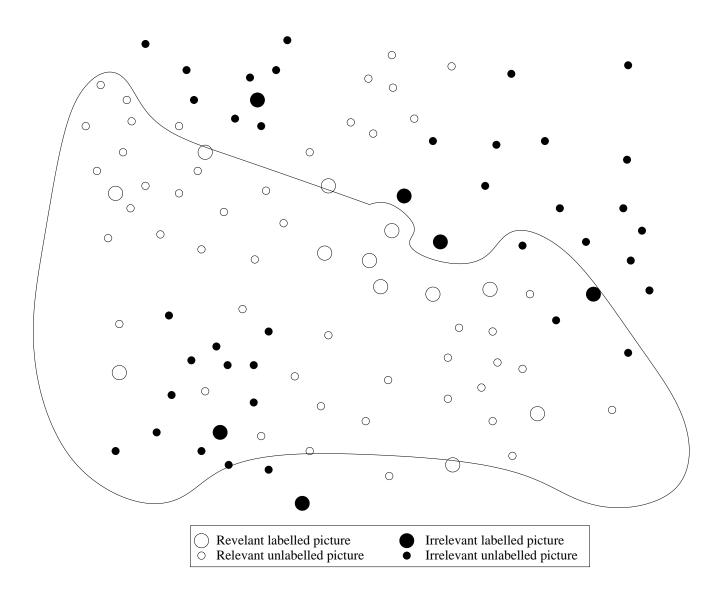
An example of retrieval session (5/8)



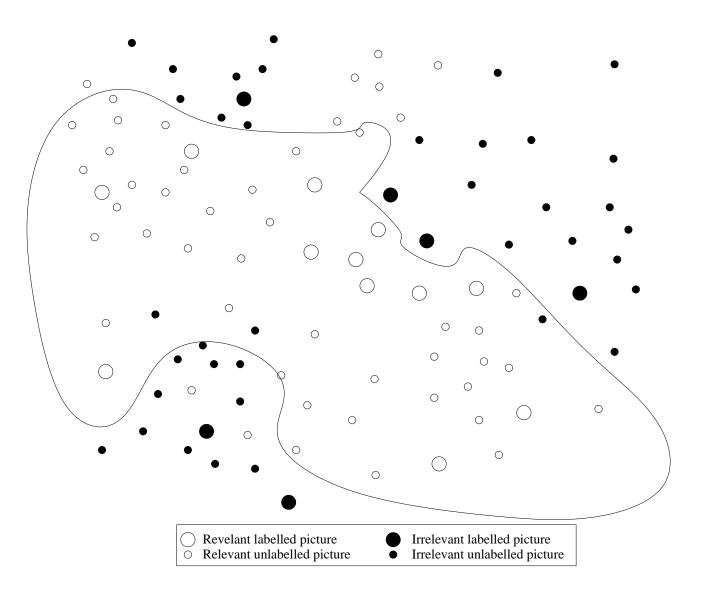
An example of retrieval session (6/8)



An example of retrieval session (7/8)



An example of retrieval session (8/8)



Methods	Top-100(%)	Time
no AL	16	0.07s
UB	28	0.41s
ER	30	600s
UB+AD	31	60s
ER+AD	34	700s
BC+UB+AD	36	60s
BC+ER+AD	35	700s

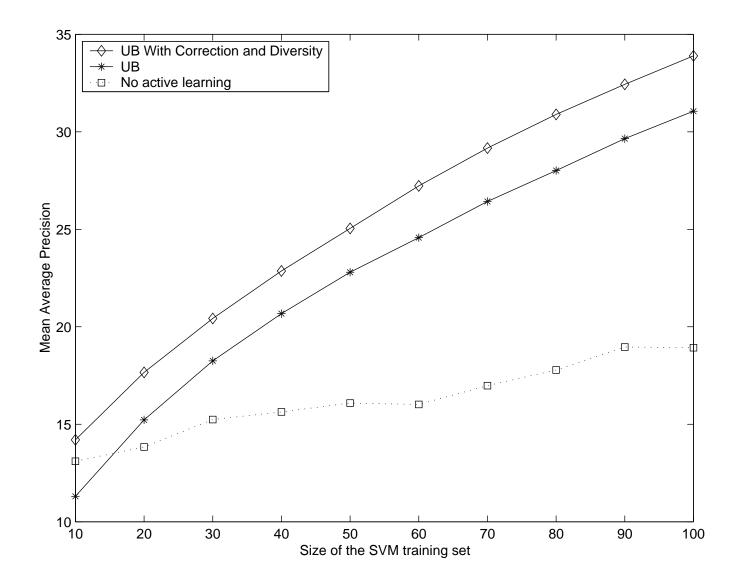
Protocol:

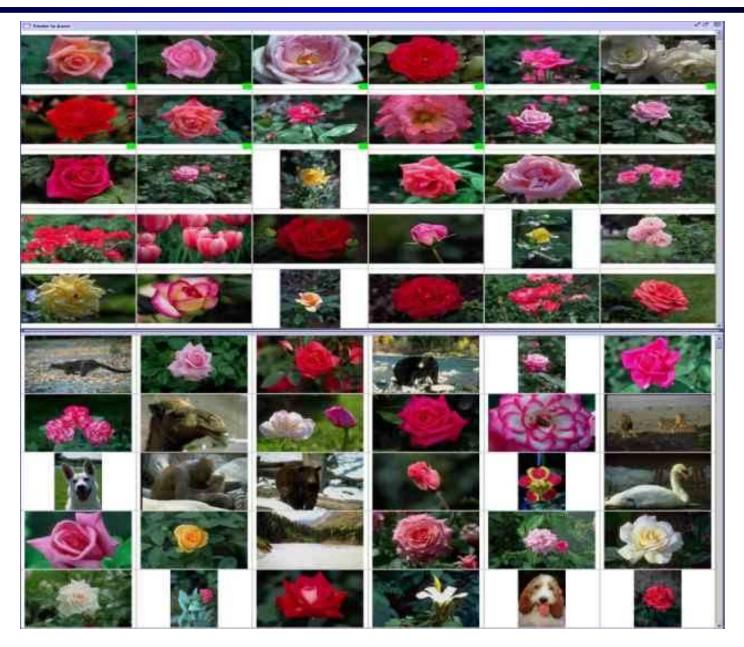
- COREL Photo database (6,000 images);
- 50 categories, 100-300 size;
- Training set of 50 points (10 feedback steps, 5 labels per step). Classification and Machine Learning techniques for CBIR: introduction to the RETIN system – p.40/81

Methods	MAP(%)
no AL	20
UB	31
ER	32
UB+AD	37
ER+AD	37
BC+UB+AD	39
BC+ER+AD	38

Protocol:

- COREL Photo database (6,000 images);
- 50 categories, 100-300 size;
- Training set of 200 points (20 feedback steps, 10 labels per step). Classification and Machine Learning techniques for CBIR: introduction to the RETIN system p.41/81





Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.43/81



Conclusion for Active Learning

- Active learning gives a theoretical framework for relevance feedback
- Boundary correction efficient for uncertainly-based techniques
- Adding diversity improves the performances

- Active learning framework can be used for other optimization problems in CBIR:
 - \rightarrow Kernel parameters
 - \rightarrow Long-term, similarity matrix learning

Semi-supervised classification for CBIR

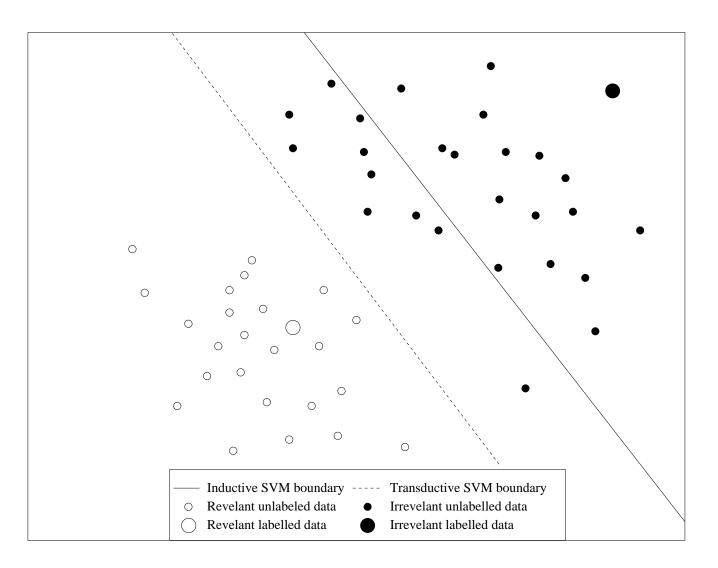
Deal with the few training data (c2) and many unlabelled data (c3) characteristics

 $\rightarrow\,$ use unlabelled data to compensate scarcity of training data.

Three representative methods:

- Transductive SVM (Joachims):
 - \rightarrow Maximize the margin considering all data.
- Gaussian Mixture (Najjar):
 - \rightarrow Estimate the gaussians using all data.
- Gaussian Fields (Zhu):
 - $\rightarrow\,$ Estimate the densities using harmonic functions.

Transductive SVM (Joachims)



Methods	Error(%)	MAP(%)	Time
SVM	2.29	20	0.13s
TSVM	2.29	20	10.7s
GM	20.2	9	12.1s
GF	?	?	>10min

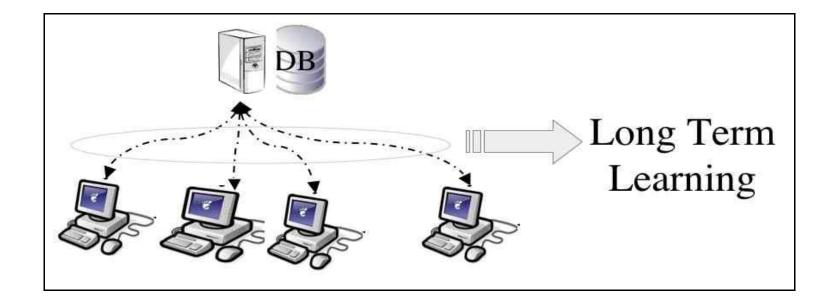
Protocol:

- COREL Photo database (6,000 images);
- 50 categories, 100-300 size;
- Training set of 200 point (unbalanced).

Long Term or Semantic learning for interactive image retrieval

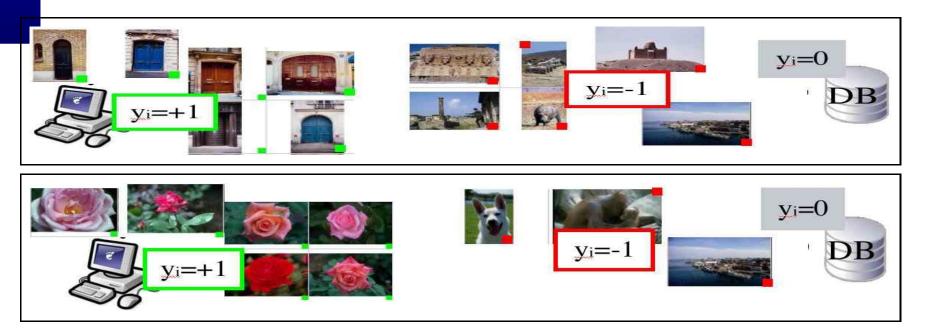
Challenge

 <u>Active research</u>: Interactive learning techniques of image categories using relevance feedback;



- <u>Limitation</u>: Knowledge lost at the end of each retrieval session;
- Proposition: Learn from past retrieval sessions Classification and Machine Learning techniques for CBIR: introduction to the RETIN system – p.51/81

- Interactive learning (relevance feedback, SVM, active learning) to retrieve an image category, a subset of the database
- In our framework, binary labels:



• <u>At the end of a retrieval session:</u> Collect all these labels in a vector y Classification and Machine Learning techniques for CBIR: introduction to the RETIN system – p.52/81

Training set

• All vectors y in a matrix Y:

		$\mathbf{y}(1)$	$\mathbf{y}(2)$	$\mathbf{y}(3)$	$\mathbf{y}(4)$	$\mathbf{y}(5)$	$\mathbf{y}(6)$	$\mathbf{y}(7)$	•••	$\mathbf{y}(M)$
	\mathbf{x}_1	1	1	0	0	-1	1	0	•••	0
	\mathbf{x}_2	1	1	1	1	-1	0	1	• • •	0
	\mathbf{x}_3	1	0	1	-1	0	0	0	•••	1
Y	: \mathbf{x}_4	0	-1	1	0	0	-1	0	•••	1
	\mathbf{x}_5	-1	0	0	1	1	-1	0	•••	0
	\mathbf{x}_6	0	0	-1	0	1	0	-1	•••	-1
	÷	÷	:	÷	÷	:	÷	÷	•	
	\mathbf{x}_N	0	1	0	0	0	-1	0	•••	0

• This matrix Y is the training set

• Partial knowledge

 \rightarrow Not possible to identify 1 category from 1 retrieval session

- Unknown category for each retrieval session
 - \rightarrow Not possible to easily rebuild categories
- Mixed categories Proposition:
- Do not work on learning some explicit categories but on the learning of the database similarities
- Long-term learning or semantic (from Y) learning
- Assumption: search for a finite nb of categories

A Gram matrix approach

- Aim: Optimize the matrix K of similarities $k(\mathbf{x}_i, \mathbf{x}_i)$ between the N images of the database
- Naïve approach: increase (resp. decrease) the similarity between two images in the same (resp. different) category using an heuristic function
- Problems:
 - No more guaranty on metric properties
 - Relevance feedback techniques can not be used anymore
- Proposition: consider a definite positive matrix of similarities K (a kernel matrix)

 \rightarrow Update K under constraints to keep dpproperties

Adaptive Method RETIN SL

- Reinforce kernel values corresponding to positive values in y, statistical accumulation
 - \rightarrow Gram matrix updating:

$$\begin{aligned} \mathbf{K}(t+1) &= \text{update}(\mathbf{K}(t), \mathbf{y}(t), \rho(t)) \\ &= (1 - \rho(t))\mathbf{K}(t) + \rho(t) \times \text{merge}(\mathbf{K}(t), \mathbf{y}(t)) \end{aligned}$$

with $\mathbf{K}(t)$ the Gram matrix at iteration t, and $\mathbf{y}(t)$ a randomly selected vector of \mathbf{Y} , and $\operatorname{merge}(\mathbf{K}(t), \mathbf{y}(t))$ an operator to merge knowledge in $\mathbf{K}(t)$ and $\mathbf{y}(t)$;

Merging strategy: the resulting form with two components:

merge(
$$\mathbf{K}, \mathbf{y}$$
) = $a \times (\mathbf{T}\mathbf{K}\mathbf{T}^t + b\mathbf{K}_{\mathbf{u}})$

First condition: unbalance updating

- Two class problem: $\forall (\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{y}_i \mathbf{y}_j > 0 => k(\mathbf{x}_i, \mathbf{x}_j) \nearrow$
- Unbalance updating:

XClass handling $\begin{cases} I \\ I \end{cases}$

$$\begin{array}{lll} \mathbf{f} \ \mathbf{y}_i > 0 & \mbox{then} & \Delta k(\mathbf{x}_i, \mathbf{x}_j) & \mbox{high} \\ \mathbf{OW} & & \Delta k(\mathbf{x}_i, \mathbf{x}_j) & \mbox{small} \end{array}$$

- $\forall (\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{y}_i \mathbf{y}_j < 0 \Longrightarrow k(\mathbf{x}_i, \mathbf{x}_j) \searrow$
- Merging strategy: $\mathbf{K}_{\mathbf{u}} = \mathbf{u}\mathbf{u}^t$ where $\mathbf{u}_k = 1$ if $\mathbf{y}_k > 0$, $\mathbf{u}_k = -\gamma$ if $\mathbf{y}_k < 0$, otherwise 0
- *dp* properties clearly preserved

- Homogenize similarities in one shot y:
- (1) Cst values inside $\begin{cases} \forall (\mathbf{y}_i, \mathbf{y}_j) = +1 & in \mathbf{y} \\ k(\mathbf{x}_i, \mathbf{x}_j) \to cst & (+1) \end{cases}$ (2) Cst V outside $\forall \mathbf{y}_i = +1 \forall \mathbf{x}_q \in db, \ k(\mathbf{x}_q, \mathbf{x}_i) \to cst_q$ • Algebraic trick: • $\mathbf{K} \leftarrow \mathbf{T}\mathbf{K}\mathbf{T}^t, \mathbf{T} = \begin{bmatrix} 1 & 1 & | \\ 1 & 1 & | \\ & | & 1 \\ & | & | \\ & | & 1 \end{bmatrix}$
 - Averaging of similarities and (1) and (2) performed
 - *dp* also preserved

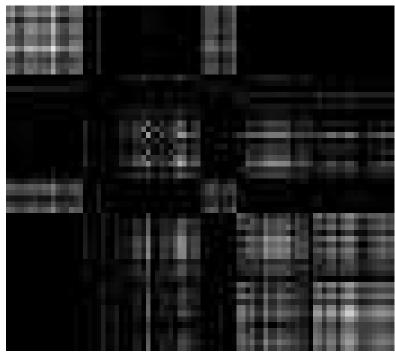
Comments

- Good news:
 - Fast evolution of the K similarity matrix because all the similarities between database images and labeled images are updated
 - Nice control of the matrix rank

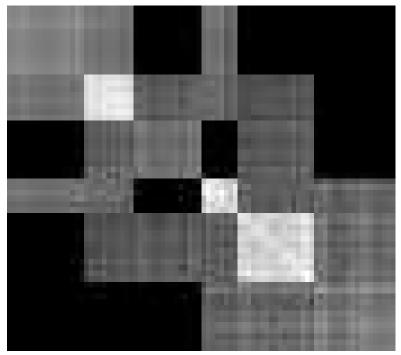
Similarity matrix

• Similarity/kernel matrix:

Before optimization



After optimization



• Operator $\mathbf{T}\mathbf{K}\mathbf{T}^{\top}$ equivalent to:

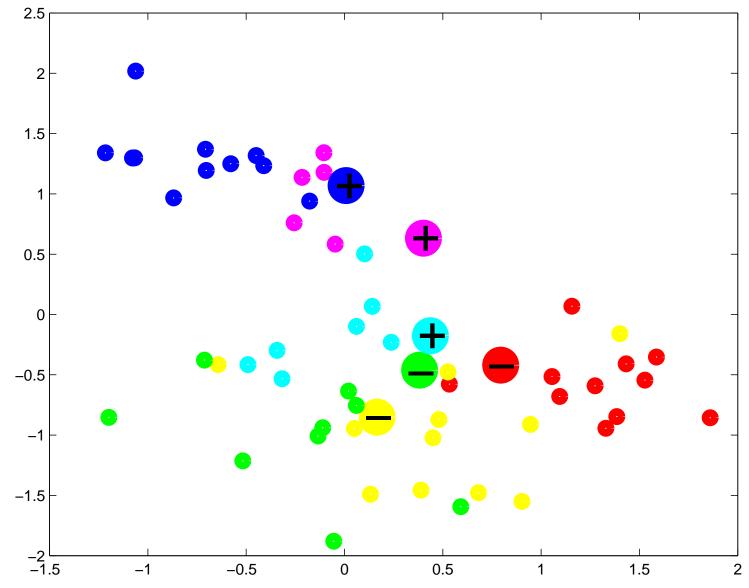
$$\forall i \in I_1 \quad \mathbf{x}_i \leftarrow \frac{1}{n_1} \sum_{j \in I_1} \mathbf{x}_j$$

with $I_1 = \{$ *relevant labeled images* $\}$

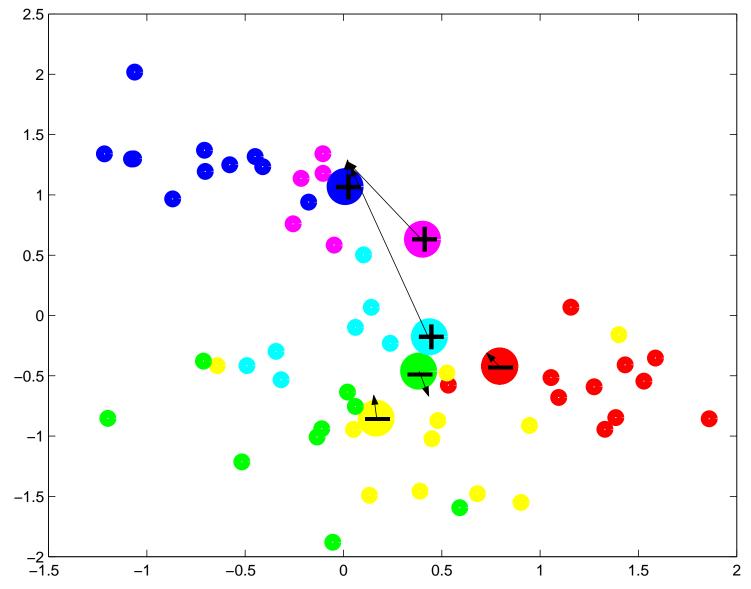
- <u>Idea:</u> move feature vectors;
- General scheme:
 - Group together images in clusters

second method: Vector-based

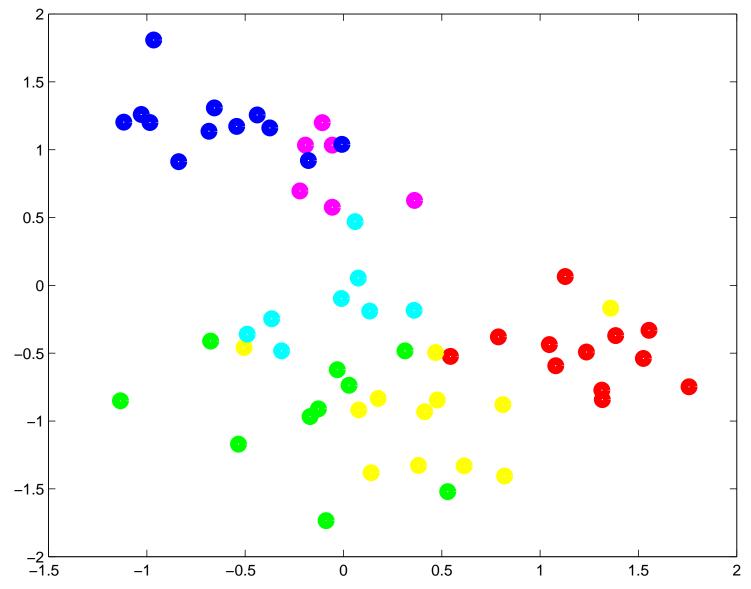
method



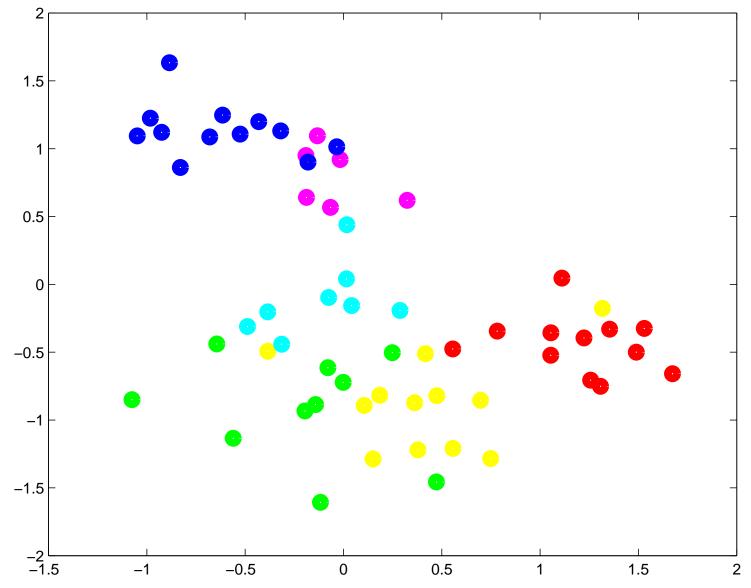
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.62/81



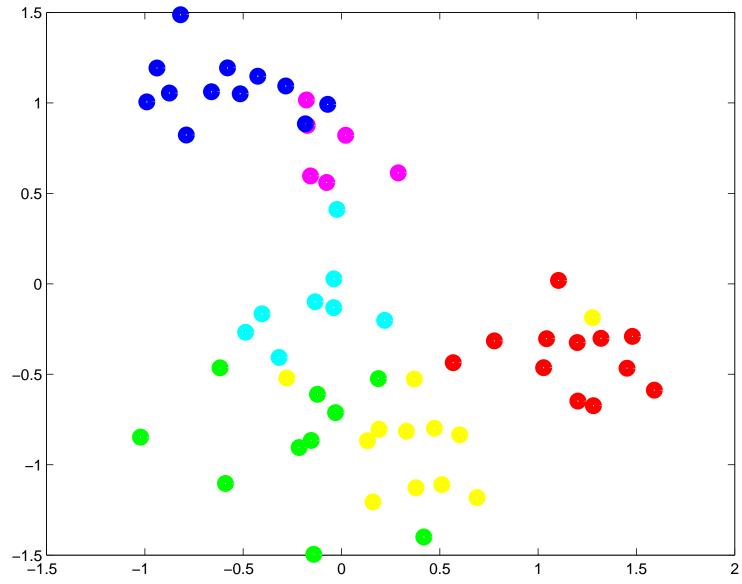
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.63/81



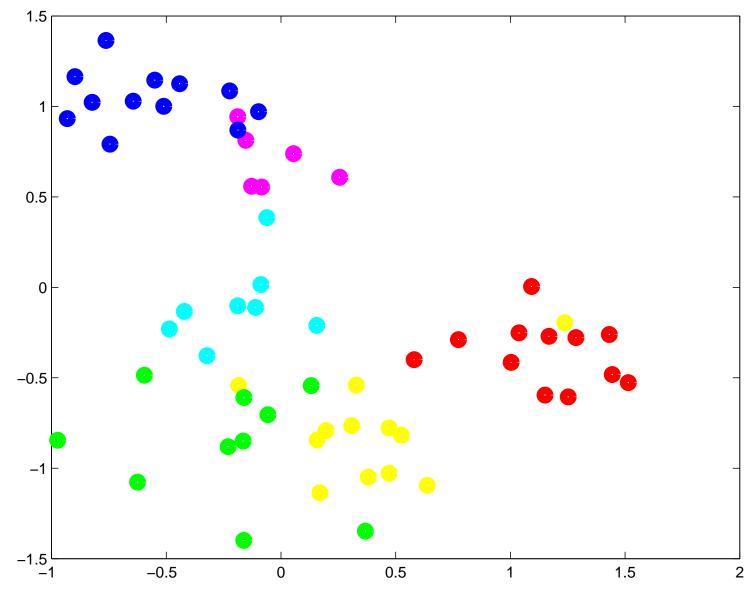
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.64/81



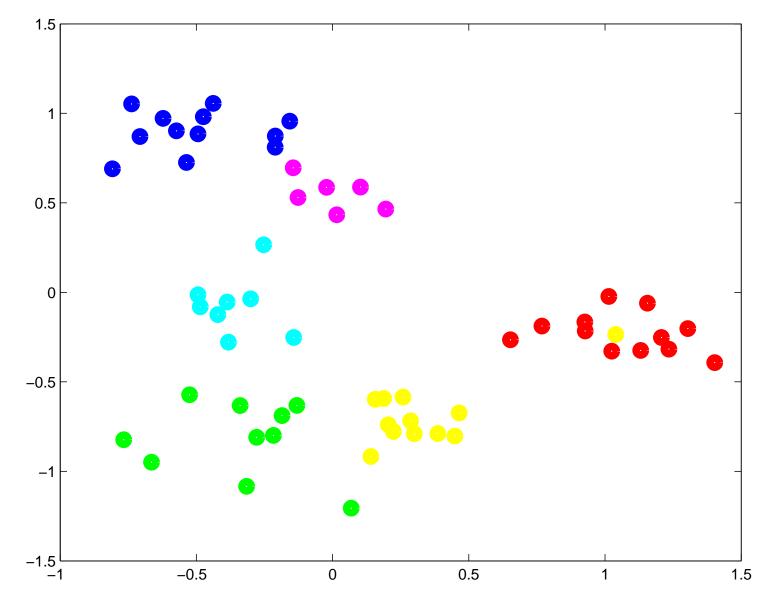
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.65/81



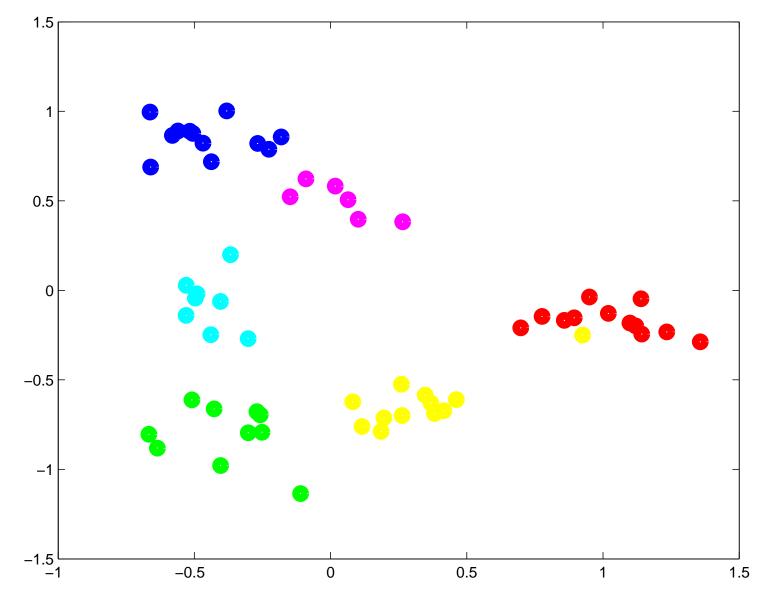
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.66/81



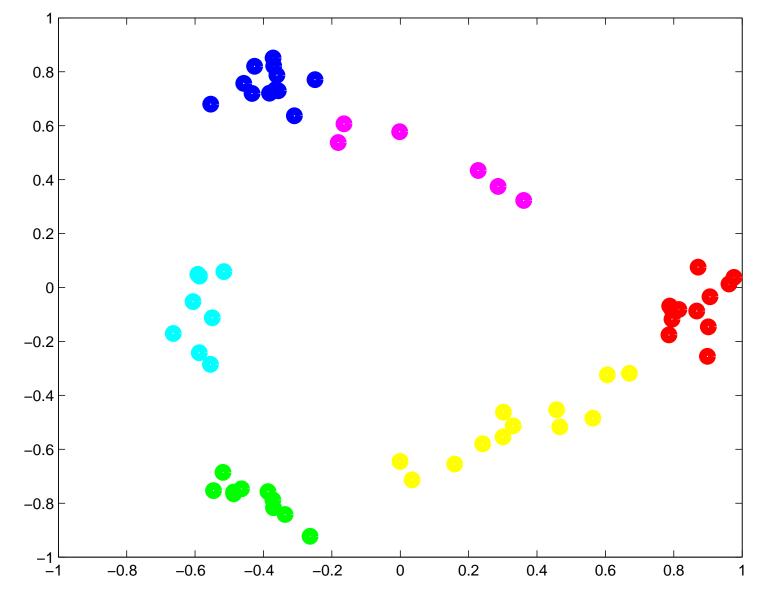
Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.67/81



Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.68/81



Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.69/81

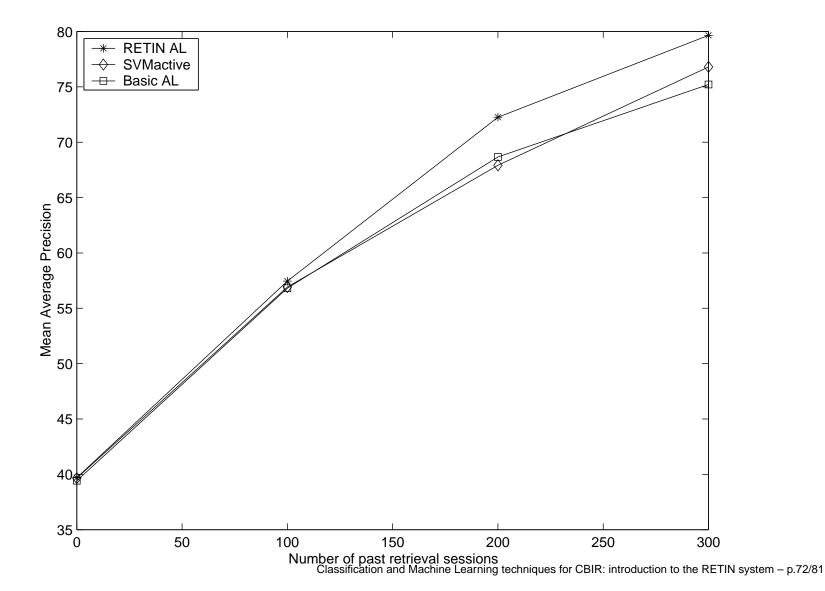


Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.70/81

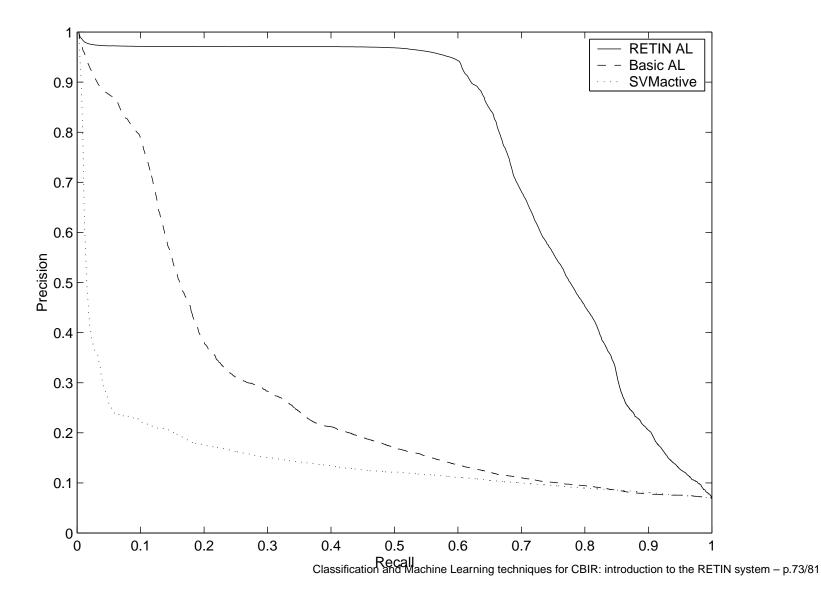
Generalist image database:

- 6,000 from COREL photo database;
- Features: $L^*a^*b^*$ and Gabor filters;
- 50 mixed categories, with size from 50 to 300 images, from simple (monomodal) to complex (multimodal); Learning set:
- Vectors y with 100 non-zero values;
- From 0 to 300 vectors y.

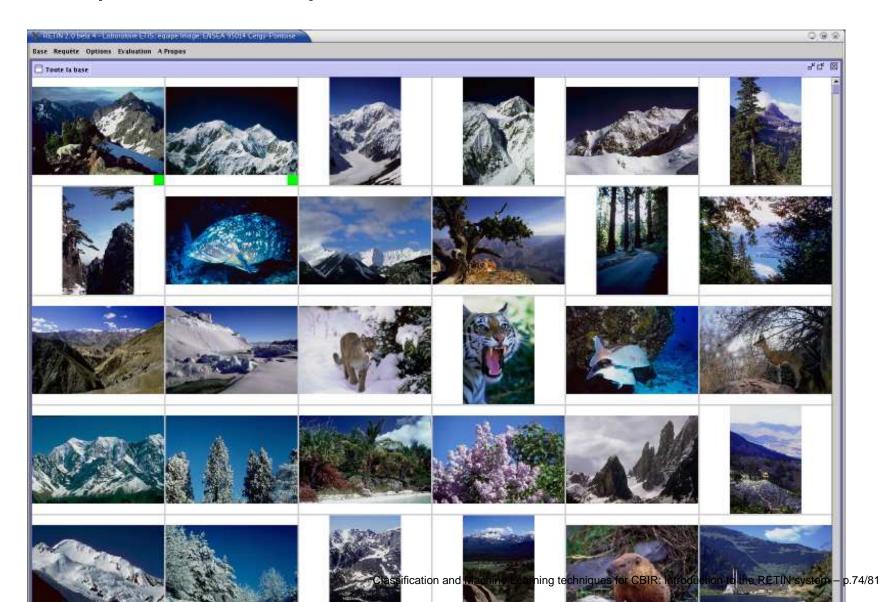
Mean performance for each active learner:



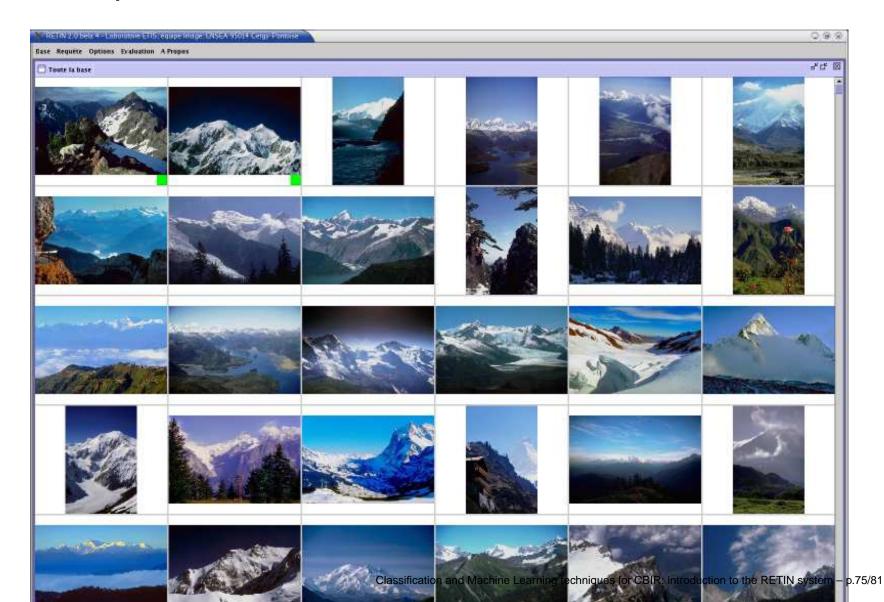
Precision/Recall curve for the 'savana' category:



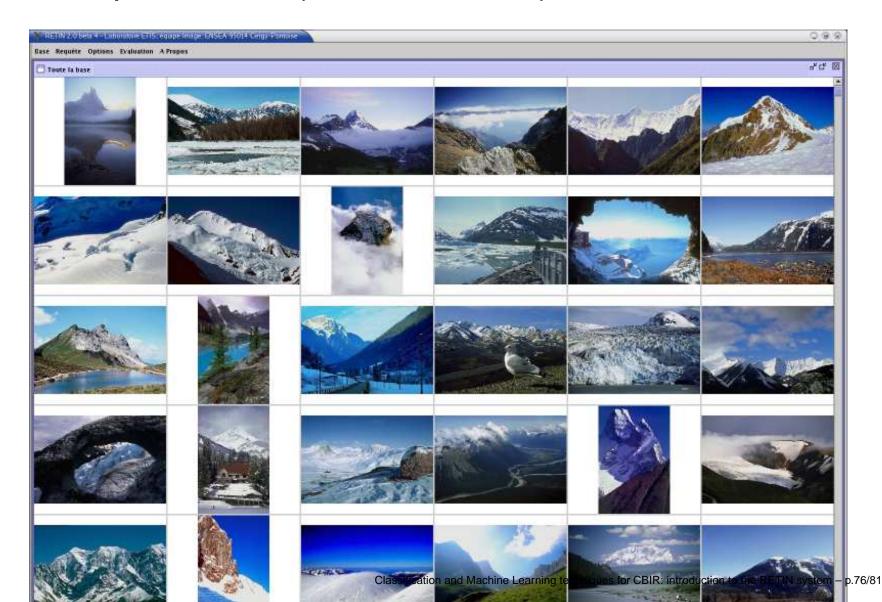
Example : before optimisation:

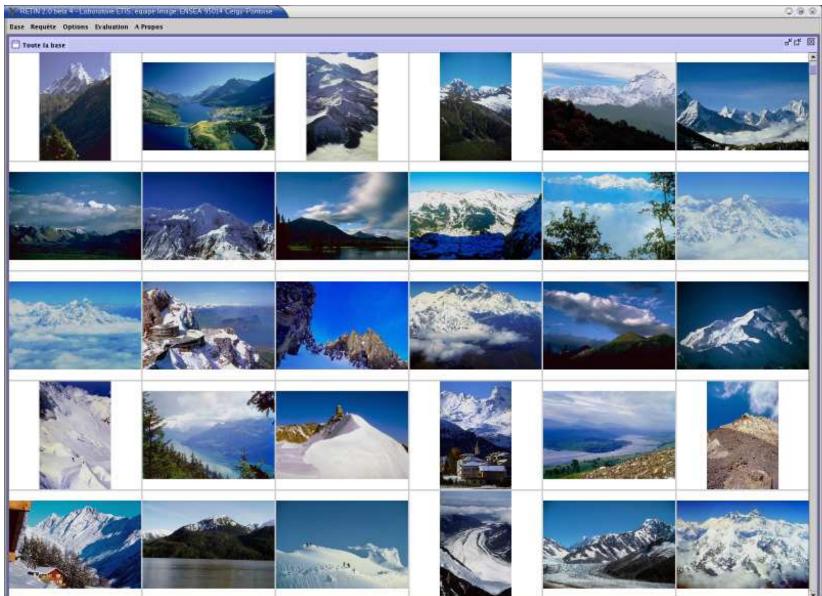


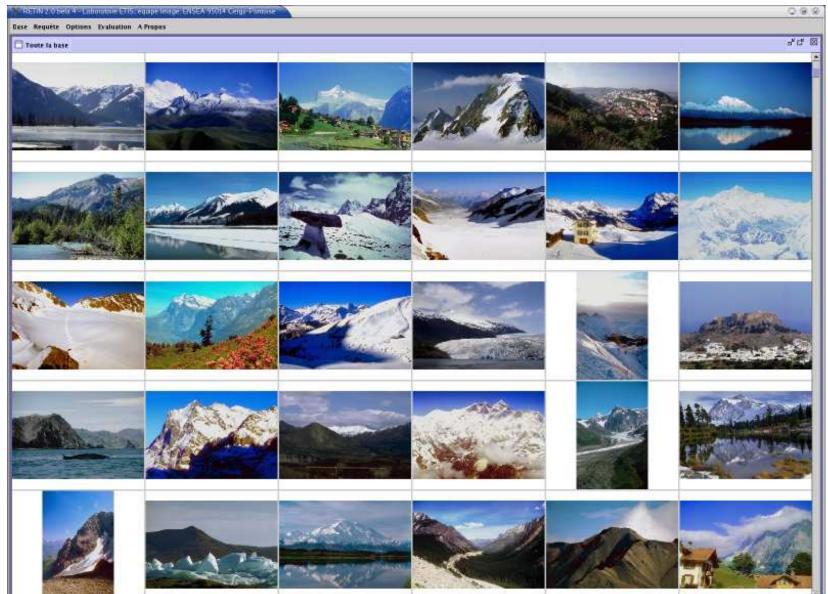
After optimisation:

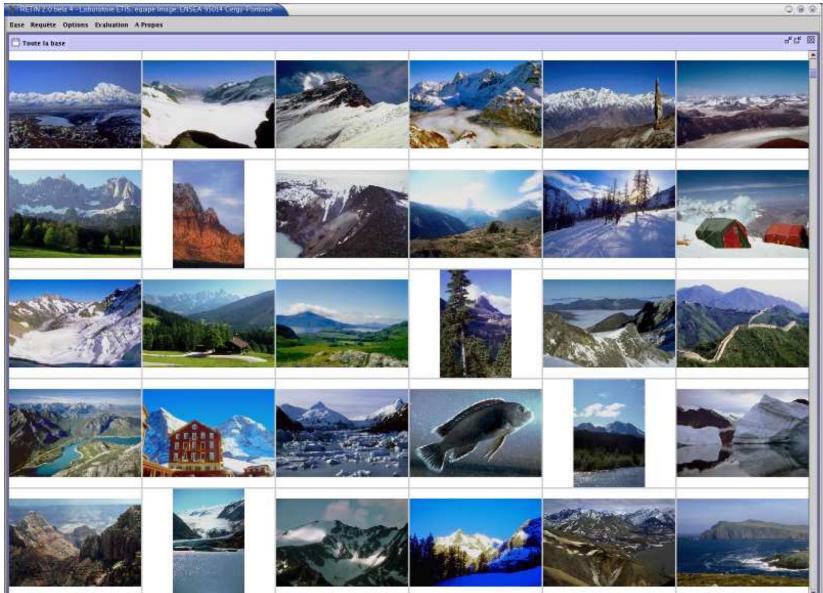


After optimisation (second screen):

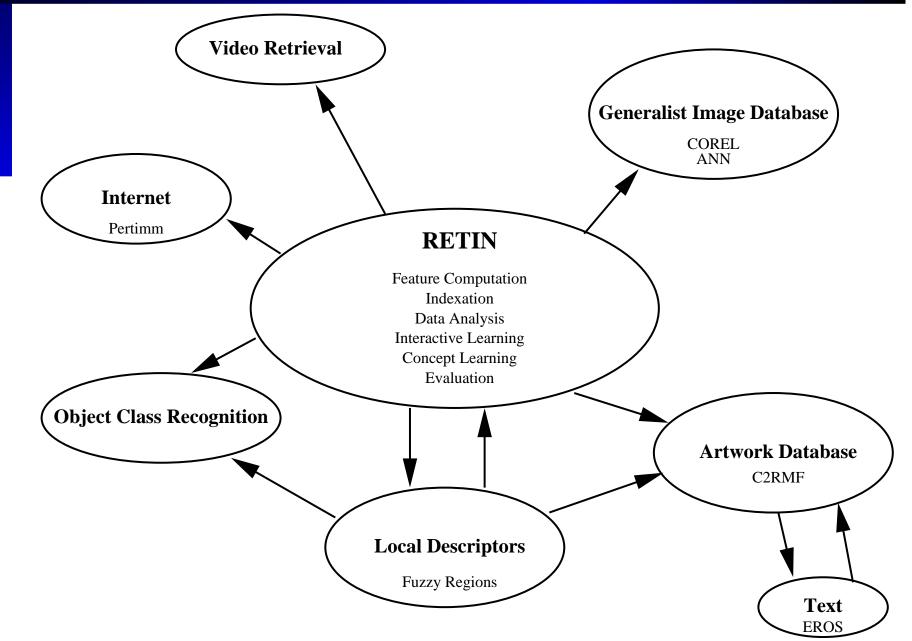








ETIS Lab.



Classification and Machine Learning techniques for CBIR: introduction to the RETIN system - p.80/81

ETIS Lab

ETIS CNRS UMR 8051 (ENSEA / Université de Cergy) http://www-etis.ensea.fr/

Matthieu Cord (cord@ensea.fr), Philippe-Henri Gosselin, Sylvie Philipp Foliguet http://perso-etis.ensea.fr/~cord/

RETIN demo : http://dupont.ensea.fr/ ruven/start.php