

Kingston University Londor

Kingston University Londor

Overview

Introduction

Ŵ

- Calibration
- Tracking
- Segmentation
 - Target handover
- Conclusion

University of Amsterdam Supervision: Theo Gevers (MSc), Nicu Sebe (PhD) ISIS / ISLA http://www.science.uva.nl/research/isla/ Kingston University London Supervision: Graeme Jones DIRC http://www.kingston.ac.uk/dirc/

Kingston University London

Introduction

Cooperative Object Tracking

with

Multiple PTZ Cameras

Ivo Everts

PhD student at UvA

- Current research in Visual Surveillance
 - Scene understanding
- Sensor networks
 - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging

Introduction

- Current research on Visual Surveillance
- Sensor networks
 - - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging

Introduction

- Current research on Visual Surveillance
 - Scene understanding
- Sensor networks
 - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging

Introduction

- Current research on Visual Surveillance
 - Scene understanding
- Sensor networks
 - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging

Kingston University Londor

Kingston University Londo

×××

Kingston University London

Introduction

- Current research on Visual Surveillance
 - Scene understanding
- Sensor networks
 - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging

Ň

Introduction

- Current research on Visual Surveillance
 - Scene understanding
- Sensor networks
 - heterogeneous
- Advantages of PTZ cameras
 - Active
 - High resolution imaging
- Goal: PTZ tracking with target handover

Tracking

- Let camera move along with targe
- Problems with motion detection
- Mean Shift
 - Assumed initialised
 - Target representation & localisation

Kingston University Londor

Kingston University Londor

Tracking

- Let camera move along with targe
- Problems with motion detection
- Mean Shift
 - Assumed initialised
 - Target representation & localisation

Ň

Kingston University London

Tracking

- Mean Shift
 - Target representation: colour histogram
 - Target q, candidate µ
 - Weighted by kernel K(x)
 - Profile k(||x||²)

Ň

Ň

Tracking

• Mean Shift

- Target representation: colour histogram
- Target q, candidate p
 - Weighted by kernel K(x)
 - Profile k(||x||²)

Tracking

Mean Shift

- Target representation: colour histogram
- Target q, candidate p
- Weighted by kernel K(x)
 - Profile k(||x||²)

Mean Shift

Ň

Target representation: colour histogram

Tracking

- Target q, candidate p
- Weighted by kernel K(x
 - Profile k(||x||²
 - Epanechnikov kernel:

Kingston University London

Tracking

- Candidate profile: function of new target centroid y
 - k(||y-xi||²)
- Metric between p and q function of y
 - Bhattacharya distance

Tracking

- Target localisation
 Minimise d(p(y),q) wrt y
- New centroid y: kernel and data weighted sum over pixels locations

Ň

Ň

Tracking

- Target localisation
 Minimise d(p(y),q) wr
- New centroid *y*: kernel and data weighted sum over pixels locations

y1

PTZ tracking algorithm

Tracking

• Example

ŝ

Kingston University Londor

Kingston University Londor

Segmentation

• Target handover

- Statistical framework
 - Find target given the colour model and location estimate of the other camera

×××

Kingston University London

Segmentation

Target handover

- Statistical framework
 - Find target given the colour model and location estimate of the other camera

×ï×

Segmentation

Target handove

- Statistical framework
 - Find target given the colour model and location estimate of the other camera
- *P*(*O*|*c*,*i*)
 - Proportional to p(i|O)p(c|O)

Segmentation

• Classify pixels

- Open image
- Find connected components
- Constrain blob on size

Ň

Kingston University Londor

Segmentation

- Classify pixels
- Open image
- Find connected components
- Constrain blob on size

׼

Kingston University London

Segmentation

- Classify pixels
- Open image
- Find connected components
- Constrain blob on size

Segmentation

- Classify pixels
- Open image
- Find connected components
- Constrain blob on size

Segmentation

- Playing hide and seek
 - Init cam 1
 - Cam1 tracks target
 - Cam 2 counts to 5
 - Cam 2 seeks target
 - When found: Cam 2 tracks target
 - Cam 1 counts to 5
 - Etcetera

Ň

Ň

Segmentation

Kingston University Londor

×XX

Kingston University London

Conclusion

- Successful target handover
 - In real time
- Simple target representation
 - Drawbacks
- Indoor setting
- Need for automation
- Camera quality
- Zoom
- Semantics
- Evaluation

• Thank you

Colour

• The problem with colour

- Different data acquisition processes
- Find out how differen
- Experiments

Ň

Colour

- The problem with colour
- Different data acquisition processes
- Find out how different
- Experiments

×

Kingston University London

Colour

- The problem with colour
- Different data acquisition processes
- Find out how different
- Experiments

Colour

- The problem with colour
- Different data acquisition processes
- Find out how different
- Experiments

Kingston University London

Colour

- Displacement plot
- Structure!
- Compensate for it: colour calibration
- Conclusion
 - xy shows hardware difference