

INRIA-VISTA Activities in Human Analysis

Emilie Dexter, Ivan Laptev, Patrick Pérez, Nicolas Gengembre IRISA/INRIA, Rennes, France

Workshop, Barcelona, January 22-23

Outline

- Introduction
- Person and object detection
- Tracking
- Periodic motion detection and segmentation
- Conclusion
- Future work

Introduction

■ INRIA – VISTA research group

http://www.irisa.fr/vista/Vista.english.html

- □ Spatio-temporal images
- Dynamic scene analysis
- Motion analysis (Detection, estimation, segmentation, tracking, recognition, interpretation with learning)

Person and object detection in static images

Ivan Laptev

IRISA/INRIA, Rennes, France

[Laptev, 2006]

Detection

Training:

AdaBoost Learning with Local Histogram Features

[Freund and Schapire, 1997] [Viola and Jones, 2001]

Detection

Search:

Classify windows at all image positions and scales

Results:

people

cars

bicycles

horses

cows

Detection: Comparison

PASCAL VOC 2005:

Method	Motorbikes	Bicycles	People	Cars
Boosted Hist.	0.896	0.370	0.250	0.663
TU-Darmstadt	0.886	_	_	0.489
Edinburgh	0.453	0.119	0.002	0.000
INRIA-Dalal	0.490	_	0.013	0.613

Average precision for object detection in "test1"

Detection: Samples

Robust visual tracking with background analysis

Nicolas Gengembre, Patrick Pérez IRISA/INRIA, Rennes, France

Robust visual tracking with background analysis

- Context: generic visual tracking
 - □ No prior on object to track
 - □ No prior on video
- Requirements
 - □ Simple appearance modeling
 - Instantiated/learnt on-line
 - Discriminant enough
 - => Color histograms are appealing
- For improved robustness
 - Probabilistic modeling
 - Background analysis (local or not)

Deterministic Color-based Tracking

- "Mean-shift" tracking [Comaniciu et al.,2000]
 - □ Kernel-based global color modeling
 - □ No (or slow) adaptation
 - □ Search by gradient ascent on histogram similarity $\rho[\mathbf{h}^*, \mathbf{h}_t(\mathbf{x}_t)]$
- Pros and cons
 - □ Robust to appearance changes
 - □ Fast
 - Scale and rotation invariant
 - Local search only (occlusion problem)

Bkg/Fg Color Modeling

- Remove background contamination
- One-step update
 - □ Initial bkg/fg models with *B* bins

$$h_u^f \propto \sum_{\mathbf{x} \in R} \mathbf{1}_u[\mathbf{I}_0(\mathbf{x})], u = 1 \cdots B$$

 $h_u^b \propto \sum_{\mathbf{x} \in \partial R} \mathbf{1}_u[\mathbf{I}_0(\mathbf{x})]$

□ Empty weak fg bins

$$h_u^* \propto h_u^f \cdot \mathbf{1}(h_u^f \ge h_u^b), \ u = 1 \cdots B$$

amounts to ML classification in R and re-estimation

Background Motion

- Apparent background motion usually induced by camera motion
- Its sequential estimation permits
 - More robust object tracking
 - Easier definition of meaningful object dynamics
 - Definition of adaptation modules
 - Display of tracking results in fixed mosaic or with incrementally warped trajectories

- Approach
 - □ Robust fit of parametric motion on sparse KLT vectors
 - □ Kalman filtering for robustness to breakdowns (e.g., due to flash lights).

Selective Adaptation

- Adaptation: less necessary than with detailed models
- Still necessary: drastic zooms, illumination changes, appearance of new parts
- Drift problem: not during partial/total occlusions

(ifnot(occlusion) &
$$\hat{s}_t > 0$$
), $\mathbf{h}^* \leftarrow \alpha \mathbf{h}^* + (1-\alpha)\mathbf{h}_t^*$

Probabilistic Tracking

- More robust to occlusions, clutter, large displacements...
- Kalman [Comaniciu et al. 00]: deterministic tracker provides a unique measure
- Particle Filter [Pérez et al. 02]: bootstrap PF with likelihoods $p(\mathbf{y}_t|\mathbf{x}_t) \propto \exp \lambda \rho[\mathbf{h}^*,\mathbf{h}^f(\mathbf{x}_t)]$
- Tracking conditional to θ
 - □ "Conditional" dynamics

$$p(\mathbf{x}_t|\mathbf{x}_{t-1},\widehat{\boldsymbol{\theta}}_t) = W_{\widehat{\theta}_t}(\mathbf{x}_{t-1}) + \mathbf{w}_t$$

☐ Conditional filter [Arnaud et al. 03]: compute or approximate

$$p(\mathbf{x}_t|\mathbf{I}_{1:t},\widehat{\boldsymbol{\theta}}_{1:t})$$

Multiple Object tracking

- Joint particle filter in compound state space [Vermaak et al. 05]
 - Upper bound on object number and binary auxiliary existence variables

$$\mathbf{x}_t = (\mathbf{x}_t^k, e_t^k)_{k=1\cdots K} \in (\Lambda \times \{0, 1\})^K$$

- Markov process on e parameterized by entrance/exit probabilities
- Interaction via observation model (exclusion principle)
- □ Efficiency issue
 - Curse of dimension
 - Combinatorial treatment of interactions

Multiple Object tracking

- Marginal particle filters with approximate interactions
 - \square Given K predicted particle sets $(\mathbf{x}_t^{k,(n)}, w_t^{k,(n)})_{n=1:N}$
 - □ Build pixel ownerships

$$\beta_k(\mathbf{x}) \propto h_{u(\mathbf{x})}^* \sum_n w_t^{k,(n)} \mathbf{1}_{R(\mathbf{x}_t^{k,(n)})}(\mathbf{x}), \ \sum_k b_k(\mathbf{x}) = 1$$

Build association probabilities

$$\alpha(\mathbf{x}_t^{k,(n)}) = \frac{1}{|R(\mathbf{x}_t^{k,(n)})|} \sum_{\mathbf{x} \in R(\mathbf{x}_t^{k,(n)})} \beta_k(\mathbf{x})$$

Update weights

$$w_t^{k,(n)} \propto w_t^{k,(n)} \alpha(\mathbf{x}_t^{k,(n)})$$

Multiple Object tracking

independent trackers

interacting trackers

[Gengembre and Pérez, 2006]

Periodic Motion Detection and Segmentation via Approximate Sequence Alignment

Ivan Laptev*, Serge Belongie**, Patrick Pérez*
*IRISA/INRIA, Rennes, France
**Univ. of California, San Diego, USA

Periodic motion

 Periodic views can be approximately treated as stereopairs

 $\{s_{t+np}, ..., s_{m+np}\}$

Periodic motion

 Periodic views can be approximately treated as stereopairs

⇒ Periodic motion estimation ~ sequence alignment

Periodic motion detection

1. Corresponding points have similar motion descriptors
[Laptev and Lindeberg, 2003], [Laptev and Lindeberg, 2004]

2. Same period $p = \Delta t$ for all features

- 3. Spatial arrangement of features across periods satisfy epipolar constraint: $[x^t]'Fx^{t+p} = 0$
 - \Rightarrow Use RANSAC to estimate F and p

Periodic motion detection

Original space-time features

RANSAC estimation of F,p

Periodic motion detection

Original space-time features

RANSAC estimation of F,p

Periodic motion segmentation

- Assume periodic objects are planar
 - ⇒ Periodic points can be related by a *dynamic homography:*

$$x_t = Hx_{t+p}$$
 with linear in time $H(t) = I + p(\mathbf{v}\mathbf{n}^{\top} - \mathbf{n}^{\top}\mathbf{v}I)/d - t\mathbf{n}^{\top}\mathbf{v}I/d$

Periodic motion segmentation

- Assume periodic objects are planar
 - ⇒ Periodic points can be related by a *dynamic homography:*

$$x_t = Hx_{t+p}$$
 with linear in time $H(t) = I + p(\mathbf{v}\mathbf{n}^{\top} - \mathbf{n}^{\top}\mathbf{v}I)/d - t\mathbf{n}^{\top}\mathbf{v}I/d$

 \Rightarrow RANSAC estimation of *H* and *p*

Object-centered stabilization

Periodic frame matching and alignment

Segmentation

Disparity estimation

[Boykov and Kolmogorov, 2004] [Kolmogorov and Zabih, 2002]

Segmentation

Conclusion

- Present three different methods in the human analysis domain:
 - People detection
 - People tracking
 - Periodic motion detection and segmentation
- Detection and segmentation could initiate a tracker
- Tracker results can be used as training data for a machine learning like in the presented detection method

Definition

Correspondences in time (synchronization) and in space

Prior work addresses special cases

- □ Caspi and Irani "Spatio-temporal alignment of sequences", PAMI 2002
- □ Rao et.al. "View-invariant alignment and matching of video sequences", ICCV 2003
- Tuytelaars and Van Gool "Synchronizing video sequences", CVPR 2004

Several constraints

- ☐ Static video cameras
- □ Field of view overlap
- □ Use of static background information
- Correspondences manually established

- Generally hard problem
 - □ Unknown positions and motions of cameras
 - □ Unknown temporal offset
 - □ Possible time warping

- Useful in
 - Reconstruction of dynamic scenes
 - Recognition of dynamic scenes

Video example

Example of awaited result

References

Detection

- □ Y. Freund and R. E. Schapire "A decision-theoretic generalization of on-line learning and an application to boosting", J. of Comp. and Sys. Sc.1997.
- □ I. Laptev "Improvements of Object Detection Using Boosted Histograms", BMVC 2006
- □ P. Viola and M. Jones "Rapid object detection using a boosted cascade of simple features", CVPR 2001
- http://www.pascal-network.org/challenges/VOC/voc2005/
- □ http://www.pascal-network.org/challenges/VOC/voc2006/

Tracking

- □ E. Arnaud, E. Mémin, B. Cernushi Frias. Filtrage conditionnel pour le suivi de points dans des séquences d'images, Congrès Francophone de Vision par Ordinateur, ORASIS'03, 2003
- □ D. Comaniciu and V. Ramesh "*Mean Shift and Optimal Prediction for Efficient Object Tracking*", IEEE ICIP, 2000
- □ P. Pérez, C. Hue, J. Vermaak, and M. Gangnet "Color-based probabilistic tracking", ECCV 2002
- □ J. Vermaak, S. Godsill, P. Pérez. "Monte Carlo filtering for multi-target tracking and data association" IEEE Trans. on Aerospace and Electronic Systems 2005

Periodic motion Detection and Segmentation

- ☐ Y. Boykov and V. Kolmogorov. "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision", IEEE-PAMI 2004.
- V. Kolmogorov and R. Zabih "Multi-camera scene reconstruction via graph cuts", ECCV 2002
- □ I. Laptev and T. Lindeberg "Space-time interest points", ICCV 2003
- I. Laptev and T. Lindeberg "Local descriptors for spatio-temporal recognition", First International Workshop on Spatial Coherence for Visual Motion Analysis 2004
- □ I. Laptev, S.J. Belongie, P. Pérez and J. Wills "Periodic Motion Detection and Segmentation via Approximate Sequence Alignment", ICCV 2005